Nearly 100,000 patients submitted saliva samples to a genetic testing laboratory, providing insights into their disease risk
Researchers at Mayo Clinic have employed next-generation sequencing technology to produce a massive collection of exome data from more than 100,000 patients, offering a detailed look at genetic variants that predispose people to certain diseases. The study, known as Tapestry, was administered by doctors and scientists from the clinic’s Center for Individualized Medicine and produced the “largest-ever collection of exome data, which include genes that code for proteins—key to understanding health and disease,” according to a Mayo Clinic news release.
For our clinical laboratory professionals, this shows the keen interest that a substantial portion of the population has in using their personal genetic data to help physicians identify their risk for many diseases and types of cancer. This support by healthcare consumers is a sign that labs should be devoting attention and resources to providing these types of gene sequencing services.
As Mayo explained in the news release, the exome includes nearly 20,000 genes that code for proteins. The researchers used the dataset to analyze genes associated with higher risk of heart disease and stroke along with several types of cancer. They noted that the data, which is now available to other researchers, will likely provide insights into other diseases as well, the news release notes.
“What we’ve accomplished with the Tapestry study is a blueprint for future endeavors in medical science,” said gastroenterologist and lead researcher Konstantinos Lazaridis, MD (above), in the news story. “It demonstrates that through innovation, determination and collaboration, we can deeply advance our understanding of DNA function and eventually other bio-molecules like RNA, proteins and metabolites, turning them into novel diagnostic tools to improve health, prevent illness, and even treat disease.” Some of these newly identified genetic markers may be incorporated into new clinical laboratory assays. (Photo copyright: Mayo Clinic.)
How Mayo Conducted the Tapestry Study
One notable aspect of the study was its methodology. The study launched in July 2020 during the COVID-19 pandemic. Since many patients were quarantined, researchers conducted the study remotely, without the need for the patients to visit a Mayo facility. It ran for five years through May 31, 2024. The news release notes that it’s the largest decentralized clinical trial ever conducted by the Mayo Clinic.
The researchers identified 1.3 million patients from the main Mayo Clinic campuses in Minnesota, Arizona, and Florida who met the following eligibility criteria:
Participants had to be 18 or older,
they had to have internet and email access, and
be sufficiently proficient in speaking and reading English.
More than 114,000 patients consented to participate, but some later withdrew, resulting in a final sample of 98,222 individuals. Approximately two-thirds were women. Mean age was 57 (61.9 for men and 54.3 for women).
“It was a tremendous effort,” said Mayo Clinic gastroenterologist and lead researcher Konstantinos Lazaridis, MD, in the news release. “The engagement of such a number of participants in a relatively short time and during a pandemic showcased the trust and the dedication not only of our team but also of our patients.”
He added that the researchers “learned valuable lessons about some patients’ decisions not to participate in Tapestry, which will be the focus of future publications.”
Three Specific Genes
Enrolled patients were invited to visit a website, where they could view a video and submit an eligibility form. Once approved, they completed a digital consent agreement and received a saliva collection kit. Participants were also invited to provide information about their family history.
Helix, a clinical laboratory company headquartered in San Mateo, Calif., performed the exome sequencing.
Though Helix performed whole exome sequencing, the researchers were most interested in three specific sets of genes:
Patients received clinical results directly from Helix along with information about their ancestry. Clinical results were also transmitted to Mayo Clinic for inclusion in patients’ electronic health records (EHRs).
Among the participants, approximately 1,800 (1.9%) had what the researchers described as “actionable pathogenic or likely pathogenic variants.” About half of these were BRCA1/2.
These patients were invited to speak with a genetic counselor and encouraged to undergo additional testing to confirm the variants.
Tapestry Genomic Registry
In addition to the impact on the participants, Mayo Clinic’s now has an enormous amount of raw sequencing data stored in the Tapestry Genomic Registry, where it will be available for future research.
The database “has become a valuable resource for Mayo’s scientific community, with 118 research requests submitted,” the researchers wrote in the news release. Mayo has distribution more than a million exome datasets to other genetic researchers.
“What we’ve accomplished with the Tapestry study is a blueprint for future endeavors in medical science,” Lazaridis noted. “It demonstrates that through innovation, determination, and collaboration, we can deeply advance our understanding of DNA function and eventually other bio-molecules like RNA, proteins and metabolites, turning them into novel diagnostic tools to improve health, prevent illness, and even treat disease.”
Everything about this project is consistent with precision medicine, and the number of individuals discovered to have risk of cancers is relevant. Clinical laboratory professionals understand these ratios and the importance of early detection and early intervention.
Studies into use of population-level genomic cancer screening show promising results while indicating that such testing to find evidence of increased cancer risk among non-symptomatic people may be beneficial
In another example of a government health system initiating a program designed to proactively identify people at risk for a serious disease to allow early clinical laboratory diagnosis and monitoring for the disease, cancer researchers at Monash University in Australia have receive a $2.97 million grant from the Medical Research Future Fund (MRFF) to study ways to “identifying people who are living with a heightened cancer risk who would ordinarily be informed only after a potentially incurable cancer is diagnosed.”
According to a Monash news release, the researchers, led by Associate Professor Paul Lacaze, PhD, Head of the Public Health Genomics Program at Monash University, plan to use the award to develop a “new low-cost DNA screening test which will be offered to 10,000 young Australians. The new approach, once scaled-up, has the potential to drastically improve access to preventive genetic testing in Australia, and could help make Australia the world’s first nation to offer preventive DNA screening through a public healthcare system.”
Called DNACancerScreen, the clinical genetic test will be offered to anyone between the ages of 18 and 40, rather than to a select group of people who have a family history of cancer or who present with symptoms. The Monash scientists hope to advance knowledge about the relationship of specific genes and how they cause or contribute to cancer. Such information, they believe, could lead to the development of new precision medicine diagnostic tests and anti-cancer drug therapies.
Gap in Current Cancer Screening Practices
The DNACancerScreen test will look for genes related to two specific cancer categories:
Hereditary Breast and Ovarian Cancer Syndrome is associated with an increased risk of developing breast, ovarian, prostate, and pancreatic cancers, as well as melanoma. Lynch Syndrome is associated with colorectal, endometrial, ovarian, and other cancers.
Currently, screening practices may miss as many as 50-90% of individuals who carry genetic mutations associated with hereditary breast and ovarian cancer, and as many as 95% of those at risk due to Lynch Syndrome, according to the Monash news release.
But currently, only those with a family history of these cancers, or those who present with symptoms, are screened. By targeting younger individuals for screening, Lacaze and his team hope to give those at risk a better chance at early detection.
“This will empower young Australians to take proactive steps to mitigate risk, for earlier detection, surveillance from a younger age, and prevention of cancer altogether,” Lacaze said in the news release.
Along with the possibility of saving lives, Associate Professor Paul Lacaze, PhD (above), Head of the Public Health Genomics Program at Monash University, expects that the screening program will have an economic impact as well. “This type of preventive DNA testing will not only save lives, but also save the Australian public healthcare system money by preventing thousands of cancers,” he said. There’s evidence to back up his statement. In 2019 he led a team that published a study, titled, “Population Genomic Screening of All Young Adults in a Healthcare System: A Cost Effectiveness Analysis.” That study concluded, “Preventive genomic screening in early adulthood would be highly cost-effective in a single-payer healthcare system, but ethical issues must be considered.” (Photo copyright: Monash University.)
Similar Genetic Studies Show Encouraging Results
Although the DNACancerScreen study in Australia is important, it is not the first to consider the impact of population-level screening for Tier 1 genetic mutations. The Healthy Nevada Project (HVN), a project that combined genetic, clinical, environmental, and social data, tested participants for those Tier 1 conditions. The project was launched in 2016 and currently has more than 50,000 participants, a Desert Research Institute (DRI) press release noted.
In 2018, HVN began informing participants who had increased risk for hereditary breast and ovarian cancer, Lynch Syndrome, and a third condition called Familial Hypercholesterolemia. There were 27,000 participants, and 90% of those who had genetic mutations associated with the three Tier 1 conditions had not been previously identified.
“Our first goal was to deliver actionable health data back to the participants of the study and understand whether or not broad population screening of CDC Tier 1 genomic conditions was a practical tool to identify at-risk individuals,” said Joseph Grzymski, PhD, lead author of the HVN study in the DRI press release.
Grzymski is Principal Investigator of the Healthy Nevada Project, Director of the Renown Institute for Health Innovation, Chief Scientific Officer for Renown Health, and a Research Professor in Computational Biology and Genetics at the Desert Research Institute.
“Now, two years into doing that it is clear that the clinical guidelines for detecting risk in individuals are too narrow and miss too many at risk individuals,” he added.
A total of 358, or 1.33% of the 26,906 participants in the Healthy Nevada Project were carriers for the Tier 1 conditions, but only 25% of them met the current guidelines for screening, and only 22 had any previous suspicion in their medical records of their genetic conditions.
Another project, the MyCode Community Health Initiative conducted at Geisinger Health System, found that 87% of participants with a Tier 1 gene variant did not have a prior diagnosis of a related condition. When the participants were notified of their increased risk, 70% chose to have a related, suggested procedure.
“This evidence suggests that genomic screening programs are an effective way to identify individuals who could benefit from early intervention and risk management—but [who] have not yet been diagnosed—and encourage these individuals to take measures to reduce their risk,” a Geisinger Health press release noted.
Realizing the Promise of Precision Medicine
Studies like these are an important step in realizing the potential of precision medicine in practical terms. The Tier 1 genetic conditions are just a few of the more than 22,000 recognized human genes of which scientists have a clear understanding. Focusing only on those few genetic conditions enables clinicians to better help patients decide how to manage their risk.
“Genomic screening can identify at-risk individuals more comprehensively than previous methods and start people on the path to managing that risk. The next step is figuring out the impact genomic screening has on improving population health,” said Adam Buchanan, MPH, MS, Director of Geisinger’s Genomic Medicine Institute.
These are positive developments for clinical laboratories and anatomic pathology group practices. The three examples cited above show that a proactive screening program using genetic tests can identify individuals at higher risk for certain cancers. Funding such programs will be the challenge.
At the current cost of genetic testing, screening 100 people to identify a few individuals at high risk for cancer would probably not be considered the highest and best use of the limited funds available to the healthcare system.
Many other healthcare systems also are partnering with private genetic testing companies to pursue research that drive precision medicine goals
It is certainly unusual when a major health network announces that it will give away free genetic tests to 10,000 of its patients as a way to lay the foundation to expand clinical services involving precision medicine. However, pathologists and clinical laboratory managers should consider this free genetic testing program to be the latest marketplace sign that acceptance of genetic medicine continues to move ahead.
Notably, it is community hospitals that are launching this
new program linked to clinical laboratory research that uses genetic tests for
specific, treatable conditions. The purpose of such genetic research is to
identify patients who would benefit from test results that identify the best
therapies for their specific conditions, a core goal of precision medicine.
Clinical laboratory leaders will be interested in this
initiative, as well other partnerships between healthcare systems and private
genetic testing companies aimed at identifying and enrolling patients in
research studies for disease treatment protocols and therapies.
The Future of Precision Medicine
Modern Healthcare reported that data from the WholeMe DNA study, which was funded through donations to the AdventHealth Foundation, also will be used by the healthcare network for research beyond FH, as AdventHealth develops its genomics services. The project’s cost is estimated to reach $2 million.
“Genomics is the future of medicine, and the field is rapidly evolving. As we began our internal discussions about genomics and how to best incorporate it at AdventHealth, we knew research would play a strong role,” Wes Walker MD, Director, Genomics and Personalized Health, and Associate CMIO at AdventHealth, told Becker’s Hospital Review.
“We decided to focus on familial hypercholesterolemia
screening initially because it’s a condition that is associated with
life-threatening cardiovascular events,” he continued. “FH is treatable once
identified and finding those who have the condition can lead to identifying
other family members who are subsequently identified who never knew they had
the disease.”
The AdventHealth Orlando website states that participants in the WholeMe study receive information stored in a confidential data repository that meets HIPAA security standards. The data covers ancestry and 22 other genetic traits, such as:
Asparagus Odor Detection
Bitter Taste
Caffeine Metabolism
Cilantro Taste Aversion
Circadian Rhythm
Coffee Consumption
Delayed Sleep
Earwax Type
Endurance vs Power
Exercise Impact on Weight
Eye Color
Freckling
Hair Curl and Texture
Hand Grip Strength
Height
Lactose Tolerance
Sleep Duration
Sleep Movement
Sleeplessness
Sweet Tooth
Tan vs. Sunburn
Waist Size
Those who test positive for a disease-causing FH variant will be referred by AdventHealth for medical laboratory blood testing, genetic counseling, and a cardiologist visit, reported the Ormond Beach Observer.
One in 250 people have FH, and 90% of them are undiagnosed,
according to the FH Foundation,
which also noted that children have a 50% chance of inheriting FH from parents
with the condition.
AdventHealth plans to expand the free testing beyond central
Florida to its 46 other hospitals located in nine states, Modern Healthcare
noted.
Other Genetics Data Company/Healthcare Provider Partnerships
Helix (above) is one of the world’s largest CLIA-certified, CAP-accredited next-generation sequencing labs. The partnership with AdventHealth offered study participants Exome+: a panel-grade medical exome enhanced by more than 300,000 informative non-coding regions; a co-branded ancestry + traits DNA product for all participants; secure storage of genomic data for the lifetime of the participant; infrastructure and data to facilitate research; and in-house clinical and scientific expertise, according to Helix’s website. (Photo copyright: Orlando Sentinel.)
Business Insider noted that Helix has focused on clinical partnerships for about a year and seems to be filling a niche in the genetic testing market.
“Helix is able to sidestep the costs of direct-to-consumer
marketing and clinical test development, while still expanding its customer
base through predefined hospital networks. And the company is in a prime
position to capitalize on providers’ interest in population health management,”
Business Insider reported.
Ochsner’s program is the first “fully digital population
health program” aimed at including clinical genomics data in primary care in an
effort to affect patients’ health, FierceHealthcare
reported.
Hereditary breast and ovarian cancer due to
mutations in BRCA1 and BRCA2 genes;
Lynch
syndrome, associated with colorectal and other cancers; and
FH.
Color also offers genetic testing and whole genome sequencing services to NorthShore’s DNA10K program, which plans to test 10,000 patients for risk for hereditary cancers and heart diseases, according to news release.
And, Jefferson Health offered Color’s genetic testing to the healthcare system’s 33,000 employees, 10,000 of which signed up to learn their health risks as well as ancestry, a Color blog post states.
“Understanding the genome warning signals of every patient will be an essential part of wellness planning and health management,” said Geisinger Chief Executive Officer David Feinberg, MD, when he announced the new initiative at the HLTH (Health) Conference in Las Vegas. “Geisinger patients will be able to work with their family physician to modify their lifestyle and minimize risks that may be revealed,” he explained. “This forecasting will allow us to provide truly anticipatory healthcare instead of the responsive sick care that has long been the industry default across the nation.”
It will be interesting to see how and if genetic tests—free
or otherwise—will advance precision medicine goals and population health
treatments. It’s important for medical laboratory leaders to be involved in health
network agreements with genetic testing companies. And clinical laboratories should
be informed whenever private companies share their test results data with
patients and primary care providers.
Access to vast banks of genomic data is powering a new wave of assessments and predictions that could offer a glimpse at how genetic variation might impact everything from Alzheimer’s Disease risk to IQ scores
Anatomic pathology groups and clinical laboratories have become accustomed to performing genetic tests for diagnosing specific chronic diseases in humans. Thanks to significantly lower costs over just a few years ago, whole-genome sequencing and genetic DNA testing are on the path to becoming almost commonplace in America. BRCA 1 and BRCA 2 breast cancer gene screenings are examples of specific genetic testing for specific diseases.
However, a much broader type of testing—called polygenic scoring—has been used to identify certain hereditary traits in animals and plants for years. Also known as a genetic-risk score or a genome-wide score, polygenic scoring is based on thousands of genes, rather than just one.
Now, researchers in Cambridge, Mass., are looking into whether it can be used in humans to predict a person’s predisposition to a range of chronic diseases. This is yet another example of how relatively inexpensive genetic tests are producing data that can be used to identify and predict how individuals get different diseases.
Assessing Heart Disease Risk through Genome-Wide Analysis
Sekar Kathiresan, MD, Co-Director of the Medical and Population Genetics program at Broad Institute of MIT/Harvard and Director of the Center for Genomics Medicine at Massachusetts General Hospital (Mass General); and Amit Khera, MD, Cardiology Fellow at Mass General, told MIT Technology Review “the new scores can now identify as much risk for disease as the rare genetic flaws that have preoccupied physicians until now.”
“Where I see this going is that, at a young age, you’ll basically get a report card,” Khera noted. “And it will say for these 10 diseases, here’s your score. You are in the 90th percentile for heart disease, 50th for breast cancer, and the lowest 10% for diabetes.”
However, as the MIT Technology Review article points out, predictive genetic testing, such as that under development by Khera and Kathiresan, can be performed at any age.
“If you line up a bunch of 18-year-olds, none of them have high cholesterol, none of them have diabetes. It’s a zero in all the columns, and you can’t stratify them by who is most at risk,” Khera noted. “But with a $100 test we can get stratification [at the age of 18] at least as good as when someone is 50, and for a lot of diseases.”
Sekar Kathiresan, MD (left), Co-Director of the Medical and Population Genetics program at Broad Institute at MIT/Harvard and Director of the Center for Genomics Medicine at Massachusetts General Hospital; and Amit Khera, MD (right), Cardiology Fellow at Mass General, are researching ways polygenic scores can be used to predict the chance a patient will be prone to develop specific chronic diseases. Anatomic pathology biomarkers and new clinical laboratory performed genetic tests will likely follow if their research is successful. (Photo copyrights: Twitter.)
Polygenic Scores Show Promise for Cancer Risk Assessment
“It was also striking how results from population-based studies were reproduced using data from electronic health records, a database not ideally designed for specific research questions and [which] is certainly not a population-based sample,” she continued.
The UCSD study highlights one of the unique benefits of polygenic scores. A person’s DNA is established in utero. However, predicting predisposition to specific chronic diseases prior to the onset of symptoms has been a major challenge to developing diagnostics and treatments. Should polygenic risk scores prove accurate, they could provide physicians with a list of their patients’ health risks well in advance, providing greater opportunity for early intervention.
Future Applications of Polygenic Risk Scores
In the January issue of the British Medical Journal (BMJ), researchers from UCSD outlined their development of a polygenic assessment tool to predict the age-of-onset of aggressive prostate cancer. As Dark Daily recently reported, for the first time in the UK, prostate cancer has surpassed breast cancer in numbers of deaths annually and nearly 40% of prostate cancer diagnoses occur in stages three and four. (See, “UK Study Finds Late Diagnosis of Prostate Cancer a Worrisome Trend for UK’s National Health Service,” May 23, 2018.)
An alternative to PSA-based testing, and the ability to differentiate aggressive and non-aggressive prostate cancer types, could improve outcomes and provide healthcare systems with better treatment options to reverse these trends.
While the value of polygenic scores should increase as algorithms and results are honed and verified, they also will most likely add to concerns raised about the impact genetic test results are having on patients, physicians, and genetic counselors.
And, as the genetic testing technology of personalized medicine matures, clinical laboratories will increasingly be required to protect and distribute much of the protected health information (PHI) they generate.
Nevertheless, when the data produced is analyzed and combined with other information—such as anatomic pathology testing results, personal/family health histories, and population health data—polygenic scores could isolate new biomarkers for research and offer big-picture insights into the causes of and potential treatments for a broad spectrum of chronic diseases.