UCF Researchers Develop an Optical Sensor That Identifies Viruses in Blood Samples in Seconds with 95% Accuracy

New nanotechnology device is significantly faster than typical rapid detection clinical laboratory tests and can be manufactured to identify not just COVID-19 at point of care, but other viruses as well Researchers at the University of Central Florida (UCF) announced the development of an optical sensor that uses nanotechnology to identify viruses in blood samples in seconds with an impressive 95% accuracy. This breakthrough underscores the value of continued research into technologies that...

Researchers at Several Top Universities Unveil CRISPR-Based Diagnostics That Show Great Promise for Clinical Laboratories

Three innovative technologies utilizing CRISPR-Cas13, Cas12a, and Cas9 demonstrate how CRISPR might be used for more than gene editing, while highlighting potential to develop new diagnostics for both the medical laboratory and point-of-care (POC) testing markets CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is in the news again! The remarkable genetic-editing technology is at the core of several important developments in clinical laboratory and anatomic pathology...

University of Pennsylvania Researchers Develop $2 Zika Proof-of-Concept Test That Needs Neither Electricity Nor a Clinical Laboratory to Return Accurate Results

Using 3D printing and a chemical heat source, University of Pennsylvania researchers have created a proof-of-concept for an affordable Zika test that returns results in just 40 minutes There’s a gap in Zika virus testing that researchers at the University of Pennsylvania hope to fill. That gap is a point-of-care test for the Zika virus that can produce a fast and accurate result, whether in developed nations or in developing countries that don’t have many state-of-the art clinical...
;