Nearly 100,000 patients submitted saliva samples to a genetic testing laboratory, providing insights into their disease risk
Researchers at Mayo Clinic have employed next-generation sequencing technology to produce a massive collection of exome data from more than 100,000 patients, offering a detailed look at genetic variants that predispose people to certain diseases. The study, known as Tapestry, was administered by doctors and scientists from the clinic’s Center for Individualized Medicine and produced the “largest-ever collection of exome data, which include genes that code for proteins—key to understanding health and disease,” according to a Mayo Clinic news release.
For our clinical laboratory professionals, this shows the keen interest that a substantial portion of the population has in using their personal genetic data to help physicians identify their risk for many diseases and types of cancer. This support by healthcare consumers is a sign that labs should be devoting attention and resources to providing these types of gene sequencing services.
As Mayo explained in the news release, the exome includes nearly 20,000 genes that code for proteins. The researchers used the dataset to analyze genes associated with higher risk of heart disease and stroke along with several types of cancer. They noted that the data, which is now available to other researchers, will likely provide insights into other diseases as well, the news release notes.
“What we’ve accomplished with the Tapestry study is a blueprint for future endeavors in medical science,” said gastroenterologist and lead researcher Konstantinos Lazaridis, MD (above), in the news story. “It demonstrates that through innovation, determination and collaboration, we can deeply advance our understanding of DNA function and eventually other bio-molecules like RNA, proteins and metabolites, turning them into novel diagnostic tools to improve health, prevent illness, and even treat disease.” Some of these newly identified genetic markers may be incorporated into new clinical laboratory assays. (Photo copyright: Mayo Clinic.)
How Mayo Conducted the Tapestry Study
One notable aspect of the study was its methodology. The study launched in July 2020 during the COVID-19 pandemic. Since many patients were quarantined, researchers conducted the study remotely, without the need for the patients to visit a Mayo facility. It ran for five years through May 31, 2024. The news release notes that it’s the largest decentralized clinical trial ever conducted by the Mayo Clinic.
The researchers identified 1.3 million patients from the main Mayo Clinic campuses in Minnesota, Arizona, and Florida who met the following eligibility criteria:
Participants had to be 18 or older,
they had to have internet and email access, and
be sufficiently proficient in speaking and reading English.
More than 114,000 patients consented to participate, but some later withdrew, resulting in a final sample of 98,222 individuals. Approximately two-thirds were women. Mean age was 57 (61.9 for men and 54.3 for women).
“It was a tremendous effort,” said Mayo Clinic gastroenterologist and lead researcher Konstantinos Lazaridis, MD, in the news release. “The engagement of such a number of participants in a relatively short time and during a pandemic showcased the trust and the dedication not only of our team but also of our patients.”
He added that the researchers “learned valuable lessons about some patients’ decisions not to participate in Tapestry, which will be the focus of future publications.”
Three Specific Genes
Enrolled patients were invited to visit a website, where they could view a video and submit an eligibility form. Once approved, they completed a digital consent agreement and received a saliva collection kit. Participants were also invited to provide information about their family history.
Helix, a clinical laboratory company headquartered in San Mateo, Calif., performed the exome sequencing.
Though Helix performed whole exome sequencing, the researchers were most interested in three specific sets of genes:
Patients received clinical results directly from Helix along with information about their ancestry. Clinical results were also transmitted to Mayo Clinic for inclusion in patients’ electronic health records (EHRs).
Among the participants, approximately 1,800 (1.9%) had what the researchers described as “actionable pathogenic or likely pathogenic variants.” About half of these were BRCA1/2.
These patients were invited to speak with a genetic counselor and encouraged to undergo additional testing to confirm the variants.
Tapestry Genomic Registry
In addition to the impact on the participants, Mayo Clinic’s now has an enormous amount of raw sequencing data stored in the Tapestry Genomic Registry, where it will be available for future research.
The database “has become a valuable resource for Mayo’s scientific community, with 118 research requests submitted,” the researchers wrote in the news release. Mayo has distribution more than a million exome datasets to other genetic researchers.
“What we’ve accomplished with the Tapestry study is a blueprint for future endeavors in medical science,” Lazaridis noted. “It demonstrates that through innovation, determination, and collaboration, we can deeply advance our understanding of DNA function and eventually other bio-molecules like RNA, proteins and metabolites, turning them into novel diagnostic tools to improve health, prevent illness, and even treat disease.”
Everything about this project is consistent with precision medicine, and the number of individuals discovered to have risk of cancers is relevant. Clinical laboratory professionals understand these ratios and the importance of early detection and early intervention.
As new diagnostic assays are cleared by regulators, clinical laboratories will play a key role in identifying appropriate patients for new less-invasive Alzheimer’s tests
With multiple companies racing to develop a blood-based test for Alzheimer’s disease (AD), clinical laboratories may soon have new less-invasive diagnostic assays for AD on their menus.
Why a race? Because a less-invasive clinical laboratory test that uses a venous blood draw (as opposed to a spinal tap)—and which has increased sensitivity/specificity—has a potentially large market given the substantial numbers of elderly predicted to develop Alzheimer’s over the next decade. It has the potential to be a high volume, high dollar diagnostic test.
In fact, Mordor Intelligence estimates that the market for Alzheimer’s disease therapeutics will grow from $7.7 billion in 2024 to $10.10 billion by 2029.
Alzheimers.gov, an official website of the US government, says, “Researchers have made significant progress in developing, testing, and validating biomarkers that detect signs of the disease process. For example, in addition to PET scans that detect abnormal beta-amyloid plaques and tau tangles [abnormal forms of tau protein] in the brain, NIH-supported scientists have developed the first commercial blood test for Alzheimer’s. This test and others in development can not only help support diagnosis but also be used to screen volunteers for research studies.”
Additionally, the US Food and Drug Administration (FDA) is clearing new Alzheimer’s drugs for clinical use. The pharma companies behind these drugs need clinical laboratory tests that accurately diagnosis the disease and confirm that it would be appropriate for the patient to receive the new therapeutic drugs, a key element of precision medicine.
“The big promise for blood tests is that they will eventually be accessible, hopefully, cost-effective, and noninvasive,” Rebecca Edelmayer, PhD (above), Vice President, Scientific Engagement, Alzheimer’s Association, told USA Today. “The field is really moving forward with use of these types of tests,” she added. Clinical laboratories may soon have these new assays on their test menus. (Photo copyright: Alzheimer’s Association.)
Companies in the Race to Develop Blood-based Alzheimer’s Tests
Researchers found that C2N’s blood test can detect brain amyloid status with “sensitivity, specificity, positive and negative predictive values that approximate those of amyloid positron emission tomography (PET) imaging,” according to a news release.
“The PrecivityAD2 blood test is intended for use in patients aged 55 and older with signs or symptoms of mild cognitive impairment or dementia who are undergoing evaluation of Alzheimer’s disease or dementia. Only a healthcare provider can order the PrecivityAD2 test,” the news release noted.
“The PrecivityAD2 blood test showed strong clinical validity with excellent agreement with brain amyloidosis by PET,” the researchers wrote.
The PrecivityAD2 test, which is mailed directly by C2N to doctors and researchers, is performed at the company’s CLIA-certified lab, according to USA Today, which added that the cost of $1,450 is generally not covered by insurance plans.
Expanding Test Access with IVD Companies
ALZpath, Inc. has a different approach to the Alzheimer’s disease test market. The Carlsbad, Calif.-based company, set up an agreement with in vitro diagnostics (IVD) company Roche Diagnostics for use of its phosphorylated tau (pTau)217 antibody “to develop and commercialize an Alzheimer’s disease diagnostic blood test that will be offered on the Roche Elecsys platform,” according to a news release.
Roche received FDA breakthrough device designation on the Elecsys pTau217 test earlier this year and will work with pharmaceutical company Eli Lilly to commercialize the test.
Estimates show 75% of dementia cases go undetected—a number which could grow to 140 million by 2050, according to data shared by Roche with Fierce Biotech.
“We plan to leverage our installed base of diagnostic systems, which is the largest in the world, to ensure we are able to create access to this test for those who need it the most,” Matt Sause, CEO, Roche Diagnostics, told Fierce Biotech.
Another IVD company, Beckman Coulter, recently signed an agreement to use ALZpath’s pTau217 antibody test in its DxI 9000 Immunoassay Analyzer. In a news release, Kathleen Orland, SVP and General Manager of the Clinical Chemistry Immunoassay Business Unit at Beckman Coulter, said that the test had “high performance in detecting amyloid pathology” and could “integrate into our advanced DxI 9000 platform to support broad-based testing.”
Clinical Laboratory Participation
The FDA is drafting new guidance titled, “Early Alzheimer’s Disease: Developing Drugs for Treatment” that is “intended to assist sponsors in the clinical development of drugs for the treatment of the stages of sporadic Alzheimer’s disease (AD) that occur before the onset of overt dementia.”
Pharma companies intent on launching new drugs for Alzheimer’s will need medical laboratory tests that accurately diagnosis the disease to confirm the medications would be appropriate for specific patients.
Given development of the aforementioned pTau217 antibody tests, and others featuring different diagnostic technologies, it’s likely clinical laboratories will soon be performing new assays for diagnosing Alzheimer’s disease.
Researchers have been exploring the role metabolites play in the development of disease for some time. Alzheimer’s is a progressive, degenerative brain disease typically linked to age, family history, and deposits of certain proteins in the brain that cause the brain to shrink and brain cells to eventually die. Alzheimer’s is the most common form of dementia, accounting for an estimated 60% to 80% of all dementia cases. It has no cure or proven method of prevention, according to the Alzheimer’s Association.
There are nearly seven million people living with Alzheimer’s in the US and 55 million people worldwide live with it or other forms of dementia. Patients are usually over the age of 65, but it can present in younger patients as well.
“Gut metabolites are the key to many physiological processes in our bodies, and for every key there is a lock for human health and disease,” said Feixiong Cheng, PhD (above), founding director of the Cleveland Clinic Genome Center, in a news release. “The problem is that we have tens of thousands of receptors and thousands of metabolites in our system, so manually figuring out which key goes into which lock has been slow and costly. That’s why we decided to use AI.” Findings from the study could lead to new clinical laboratory biomarkers for dementia screening tests. (Photo copyright: Cleveland Clinic Lerner Research Institute.)
Changes to Gut Bacteria
Metabolites are substances released by bacteria when the body breaks down food, drugs, chemicals, or its own tissue, such as fat or muscle. They fuel cellular processes within the body that may be either helpful or harmful to an individual’s health.
The Cleveland Clinic researchers believe that preventing detrimental interactions between metabolites and cells could aid in disease prevention. Previous studies have shown that Alzheimer’s patients do experience changes in their gut bacteria as the disease progresses.
To complete their study, the scientists used AI and machine learning (ML) to analyze more than 1.09 million potential metabolite-receptor pairs to determine the likelihood of developing Alzheimer’s.
They then examined genetic and proteomic data from Alzheimer’s disease studies and looked at different receptor protein structures and metabolite shapes to determine how different metabolites can affect brain cells. The researchers identified significant interactions between the gut and the brain.
They discovered that the metabolite agmatine was most likely to interact with a receptor known as CA3R in Alzheimer’s patients. Agmatine is believed to protect brain cells from inflammation and damage. They found that when Alzheimer’s-affected neurons are treated with agmatine, CA3R levels reduce. Levels of phosphorylated tau proteins, a biomarker for Alzheimer’s disease, lowered as well.
The researchers also studied a metabolite called phenethylamine. They found that it too could significantly alter the levels of phosphorylated tau proteins, a result they believe could be beneficial to Alzheimer’s patients.
New Therapies for Alzheimer’s, Other Diseases
One of the most compelling results observed in the study was the identification of specific G-protein-coupled receptors (GPCRs) that interact with metabolites present in the gut microbiome. By focusing on orphan GPCRs, the researchers determined that certain metabolites could activate those receptors, which could help generate new therapies for Alzheimer’s.
“We specifically focused on Alzheimer’s disease, but metabolite-receptor interactions play a role in almost every disease that involves gut microbes,” said Feixiong Cheng, PhD, founding director of the Cleveland Clinic Genome Center in the news release. “We hope that our methods can provide a framework to progress the entire field of metabolite-associated diseases and human health.”
The team plans to use AI technology to further develop and study the interactions between genetic and environmental factors on human health and disease progression. More research and studies are needed, but results of the Cleveland Clinic study suggest new biomarkers for targeted therapies and clinical laboratory tests for dementia diseases may soon follow.
With further study, this research may provide clinical laboratories with a new proteomic biomarker for dementia screenings that identifies risk more than 10 years before symptoms appear
Researchers at the University of Warwick in the UK and Fudan University in Shanghai, China, identified four protein biomarkers in blood that they say can predict dementia up to 15 years before diagnosis. They say these biomarkers may lead to clinical laboratory blood tests that offer alternatives to costly brain scans and lumbar punctures for diagnosis of dementia.
The scientists “used the largest cohort of blood proteomics and dementia to date,” according to a University of Warwick news release. This included taking blood from 52,645 “healthy” people without dementia who participated in the UK Biobank—a population-based study cohort, the new release noted.
“The proteomic biomarkers are [easy] to access and non-invasive, and they can substantially facilitate the application of large-scale population screening,” said neurovegetative disease specialist Jin-tai Yu, MD, PhD, a professor at Fudan University and co-author of the study, in the news release.
“The advent of proteomics offers an unprecedented opportunity to predict dementia onset,” the researchers wrote.
“This is a well-conducted study that adds to what we know about changes in blood that occur very early in diseases that cause dementia, which will be important for early diagnosis in the future,” said Tara Spires-Jones, PhD, in a post from the Science Media Center in the UK. “However,” she added, “it is important to note that these are still scientific research studies and that there are currently no blood tests available for routine use that can diagnose dementia with certainty.
“Based on this study, it does seem likely that blood tests will be developed that can predict risk for developing dementia over the next 10 years, although individuals at higher risk often have difficulty knowing how to respond,” Suzanne Schindler, MD, PhD (above), told Reuters. Schindler, an Associate Professor of Neurology at Washington University in St. Louis, was not involved in the research. Clinical laboratories may soon have a new blood test for dementia. (Photo copyright: VJDementia.)
Predicting Onset of Dementia with 90% Accuracy
The researchers analyzed 52,645 blood samples from the UK Biobank (UKBB). The samples were collected between 2006 and 2010 from healthy individuals who at that time were without dementia.
By March 2023, 1,417 of the study participants had developed Alzheimer’s disease or some other form of dementia. The researchers looked at 1,463 proteins and identified four that were present in high levels among those people:
“Individuals with higher GFAP levels were 2.32 times more likely to develop dementia,” the researchers wrote in Nature Aging. “Notably, GFAP and LTBP2 were highly specific for dementia prediction. GFAP and NEFL began to change at least 10 years before dementia diagnosis.”
When adding known risk factors such as age, sex, and genetics, the researchers said they could predict onset of dementia with 90% accuracy, according to the University of Warwick news release.
“Our findings strongly highlight GFAP as an optimal biomarker for dementia prediction, even more than 10 years before the diagnosis, with implications for screening people at high risk for dementia and for early intervention,” the researchers wrote.
The news release also noted that smaller studies had already identified some of the proteins as potential biomarkers, “but this new research was much larger and conducted over several years.”
Further Validation Needed
Amanda Heslegrave, PhD, of the UK Dementia Research Institute, University College London described the UKBB as “an excellent resource” in the Science Media Center (SMC) post. However, she noted, it’s “a highly curated biobank and may not capture all populations that we need to know the risk for. The new biomarkers identified will need further validation before being used as screening tools.”
Another expert raised additional questions about the University of Warwick/Fudan University study in the SMC post.
“These results may help researchers understand the biological systems involved in the development of dementia,” said David Curtis, MD, PhD, of the UCL Genetics Institute at University College London. “However in my view the strengths of the reported associations are not really strong enough to say that these would form a useful test for predicting who will get dementia in the future.”
Conversely, Curtis pointed to other studies suggesting that phosphorylated tau (p-tau) proteins are better candidates for developing a simple blood test.
P-tau “provides a very good indicator of whether the pathological processes leading to Alzheimer’s disease are present in the brain,” he said. “When effective treatments for Alzheimer’s disease are developed it will be very helpful indeed to have simple blood tests—such as measuring phosphorylated tau—available in order to identify who could benefit.”
At least two blood tests based on the p-tau217 variant—from ALZpath and C2N—are currently available to US clinicians as laboratory developed tests (LDT).
The UK Biobank continues to be used by researchers both in the UK and abroad because of the full sets of data on large numbers of patients over many years. There are few other sources of such data elsewhere in the world. The UK Biobank is a large-scale biomedical database and research resource. It contains de-identified genetic, lifestyle and health information, and biological samples from 500,000 UK participants.
On its website, the UK Biobank states, “It is the most comprehensive and widely-used dataset of its kind and is globally accessible to approved researchers who are undertaking health-related research that is in the public interest, whether they are from academic, commercial, government or charitable settings.”
Thus, clinical laboratory managers and pathologists can expect a continuing stream of published studies that identify biomarkers associated with different health conditions and to see where the data used in these analyses came from the UK’s biobank.
Already-existing clinical laboratory blood test may be new standard for detecting Alzheimer’s biomarkers
In Sweden, an independent study of an existing blood test for Alzheimer’s disease—called ALZpath—determined that this diagnostic assay appears to be “just as good as, if not surpass, lumbar punctures and expensive brain scans at detecting signs of Alzheimer’s in the brain,” according to a report published by The Guardian.
Alzheimer’s disease is one of the worst forms of dementia and it affects more than six million people annually according to the Alzheimer’s Association. Clinical laboratory testing to diagnose the illness traditionally involves painful, invasive spinal taps and brain scans. For that reason, researchers from the University of Gothenburg in Sweden wanted to evaluate the performance of the ALZpath test when compared to these other diagnostic procedures.
Motivated to seek a less costly, less painful, Alzheimer’s biomarker for clinical laboratory testing, neuroscientist Nicholas Ashton, PhD, Assistant Professor of Neurochemistry at the University of Gothenburg, led a team of scientists that looked at other common biomarkers used to identify changes in the brain of Alzheimer’s patients. That led them to tau protein-based blood tests and specifically to the ALZpath blood test for Alzheimer’s disease developed by ALZpath, Inc., of Carlsbad, Calif.
In their JAMA article, they wrote, “the pTau217 immunoassay showed similar accuracies to cerebrospinal fluid biomarkers in identifying abnormal amyloid β (Aβ) and tau pathologies.”
In an earlier article published in medRxiv, Ashton et al wrote, “Phosphorylated tau (pTau) is a specific blood biomarker for Alzheimer’s disease (AD) pathology, with pTau217 considered to have the most utility. However, availability of pTau217 tests for research and clinical use has been limited.”
Thus, the discovery of an existing pTau217 assay (ALZpath) that is accessible and affordable is a boon to Alzheimer’s patients and to the doctors who treat them.
“The ALZpath pTau217 assay showed high diagnostic accuracy in identifying elevated amyloid (AUC, 0.92-0.96; 95%CI 0.89-0.99) and tau (AUC, 0.93-0.97; 95%CI 0.84-0.99) in the brain across all cohorts. These accuracies were significantly higher than other plasma biomarker combinations and equivalent to CSF [cerebrospinal fluid] biomarkers,” an ALZpath press release noted.
“This is an instrumental finding in blood-based biomarkers for Alzheimer’s, paving the way for the clinical use of the ALZpath pTau217 assay,” stated Henrik Zetterberg, MD, PhD (above), Professor of Neurochemistry at the University of Gothenburg and co-author of the study. “This robust assay is already used in multiple labs around the globe.” Clinical laboratories may soon be receiving doctors’ orders for pTau217 blood tests for Alzheimer’s patients. (Photo copyright: University of Gothenburg.)
Study Details
Ashton’s team conducted a cohort study that “examined data from three single-center observational cohorts.” The cohorts included:
“Participants included individuals with and without cognitive impairment grouped by amyloid and tau (AT) status using PET or CSF biomarkers. Data were analyzed from February to June 2023,” the researchers wrote.
These trials from the US, Canada, and Spain featured 786 participants and featured “either a lumbar puncture or an amyloid PET scan to identify signs of amyloid and tau proteins—hallmarks of Alzheimer’s disease,” The Guardian reported, adding that results of the University of Gothenburg’s study showed that the ALZpath pTau217 blood test “was superior to brain atrophy assessments, in identifying signs of Alzheimer’s.”
“80% of individuals could be definitively diagnosed on a blood test without any other investigation,” Ashton told The Guardian.
Diagnosis Needed to Receive Alzheimer’s Disease Treatments
“If you’re going to receive [the new drugs], you need to prove that you have amyloid in the brain,” Ashton told The Guardian. “It’s just impossible to do spinal taps and brain scans on everyone that would need it worldwide. So, this is where the blood test [has] a huge potential.”
Even countries where such drugs were not yet available (like the UK) would benefit, Ashton said, because the test, “Could potentially say that this is not Alzheimer’s disease and it could be another type of dementia, which would help to direct the patient’s management and treatment routine.”
However, Ashton himself noted the limitations of the new findings—specifically that there is no success shown yet in Alzheimer’s drugs being taken by symptom-free individuals.
“If you do have amyloid in the brain at 50 years of age, the blood test will be positive,” he said. “But what we recommend, and what the guidelines recommend with these blood tests, is that these are to help clinicians—so someone must have had some objective concern that they have Alzheimer’s disease, or [that] their memory is declining,” he told The Guardian.
Experts on the Study Findings
“Blood tests could be used to screen everyone over 50-years old every few years, in much the same way as they are now screened for high cholesterol,” David Curtis, MD, PhD, Honorary Professor in the Genetics, Evolution and Environment department at University College London, told The Guardian.
“Results from these tests could be clear enough to not require further follow-up investigations for some people living with Alzheimer’s disease, which could speed up the diagnosis pathway significantly in future,” Richard Oakley, PhD, Associate Director of Research and Innovation at the Alzheimer’s Society, UK, told The Guardian.
Though Oakley found the findings promising, he pointed out what should come next. “We still need to see more research across different communities to understand how effective these blood tests are across everyone who lives with Alzheimer’s disease,” he said.
“Expanding access to this highly accurate Alzheimer’s disease biomarker is crucial for wider evaluation and implementation of AD blood tests,” the researchers wrote in JAMA Neurology.
“ALZpath makers are in discussions with labs in the UK to launch it for clinical use this year, and one of the co-authors, Henrik Zetterberg, MD, PhD, Professor of Neurochemistry at the University of Gothenburg, is making the assay available for research use as part of the ‘biomarker factory’ at UCL,” The Guardian reported.
In the US, to be prescribed any of the available Alzheimer’s medications, a doctor must diagnose that the patient has amyloid in the brain. A pTau217 diagnostic blood test could be used to make such a diagnosis. Currently, however, the test is only available “for research studies through select partner labs,” Time reported.
“But later this month, doctors in the US will be able to order the test for use with patients. (Some laboratory-developed tests performed by certain certified labs don’t require clearance from the US Food and Drug Administration.),” Time added.
It may be that the University of Gothenburg study will encourage Alzheimer’s doctors in the UK and around the world to consider ordering pTau217 diagnostic blood tests from clinical laboratories, rather than prescribing spinal taps and brains scans for their Alzheimer’s patients.