News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

UK Biobank Launches Large, Comprehensive Study of the Human Proteome

Study is expected to result in new clinical laboratory test biomarkers based on proteins shown to be associated with specific diseases

In January, the UK Biobank announced the launch of the “world’s most comprehensive study” of the human proteome. The study focuses on proteins circulating throughout the human body. Researchers involved in this endeavor hope the project will transform disease detection and lead to clinical laboratory blood tests that help diagnosticians identify illnesses earlier than with conventional diagnostics.   

Building on the results of a 2023 pilot project that studied “the effects of common genetic variation on proteins circulating in the blood and how these associations can contribute to disease,” according to a UK Biobank news release, the 2025 UK Biobank Pharma Proteomics Project (UKB-PPP) plans to analyze up to 5,400 proteins in 600,000 samples to explore how an individual’s protein levels changes over time and how those changes may influence the existence of diseases in mid-to-late life.

The specimens being analyzed include 500,000 samples extracted from UK Biobank participants and an additional 100,000 set of second samples taken from volunteers up to 15 years later. 

“The data collected in the study will allow scientists around the world to conduct health-related research, exploring how lifestyle, environment, and genetics lead through proteins to some people developing particular diseases, while others do not,” Sir Rory Collins, FMedSci FRS, professor of medicine and epidemiology at University of Oxford and principal investigator and chief executive of the UK Biobank, told The Independent.

“That will allow us to identify who it is, who’s likely to develop disease well before they do, and we can then look at ways in which to prevent those conditions before they develop,” he added.

“It really might be possible to develop simple blood tests that can detect disease much earlier than currently exists,” said Naomi Allen, MSc, DPhil (above), chief scientist for UK Biobank and professor of epidemiology at Oxford Population Health, University of Oxford, in an interview with The Independent. “So, it adds a crucial piece in the jigsaw puzzle for scientists to figure out how disease develops and gives us firm clues on what we can do to prevent and treat it.” Clinical laboratories may soon have new test biomarkers that help identify proteins associated with specific diseases. (Photo copyright: UK Biobank.)

Developing New Protein-based Biomarkers

A proteome is the entire set of proteins expressed by an organism, cell, or tissue and the study of the proteome is known as proteomics. The proteome is an expression of an organism’s genome, but it can change over time between cell types and growth conditions. 

The human genome contains approximately 20,000 genes and human cells have between 80,000 and 400,000 proteins with specific cells having their own proteomes. Proteomics can help ascertain how proteins function and interact with each other and assist in the identification of biomarkers for new drug discoveries and development. 

“This is hugely valuable, because it will enable researchers to see how changes in protein levels within individuals over mid- to late-life influence the development of a whole range of different diseases,” said Naomi Allen, MSc, DPhil, chief scientist for UK Biobank and professor of epidemiology at the Oxford Population Health, University of Oxford, in The Independent. “It will accelerate research into the causes of disease and the development of new treatments that target specific proteins associated with those diseases.

“The pilot data is already showing that specific proteins are elevated in those who go on to develop many different types of cancers up to seven years before a clinical diagnosis is made. And for dementia, up to 10 years before clinical diagnosis is made,” she added.

According to the project’s website, the UK Biobank’s proteomics dataset will allow researchers to: 

  • Examine proteomic and genetic data from half a million people to provide a more detailed picture of the biological processes involved in disease progression.
  • Examine how and why protein levels change over time to understand age-related changes in healthy individuals.
  • Utilize proteomic data together with imaging data to understand disease mechanisms.
  • Open pathways for the development of artificial intelligence (AI), machine-learning tools that can predict future diseases and produce early interventions.

“Data from the pilot study has shown that specific proteins are substantially elevated in individuals with autoimmune conditions like multiple sclerosis and Crohn’s disease and so on,” Allen noted. “So, you can see how a simple blood test could be used to complement existing diagnostic measures in order to diagnose these types of diseases more accurately and perhaps more quickly.”

An Invaluable Resource of Knowledge

The initial UK Biobank started in 2006 and, to date, has collected biological and medical data from more than half a million individuals. The subjects of the UKB-PPP study are between the ages of 40 and 69 and reside in the UK. The database is globally accessible to approved researchers and scientists engaging in research into various diseases. 

The full dataset of the latest research is expected to be added to the UK Biobank Research Analysis Platform by the year 2027. The newest study is backed by a consortium of 14 pharmaceutical firms.

Allen also noted that evidence from the research has emphasized how some drugs may be useful in treating a variety of conditions. 

“Some proteins that are known to be important for immunity are related to developing a range of psychiatric conditions like schizophrenia, depression, bipolar disorder and so on,” she told The Independent. “And given there are drugs already available that specifically target some of these proteins that are used for other conditions, it presents a real opportunity for repurposing those existing drugs for these neuropsychiatric conditions.”

This type of comprehensive study of the human proteome may have a great impact on patient diagnosis and treatment once the study is completed and the results are disclosed.

“The data will be invaluable. The value of the data is infinite,” Collins told The Independence.

Since it is clinical laboratories that will be engaged in testing for proteins that have become associated with specific diseases, this new UK Biobank study has the potential to expand knowledge about useful protein markers for both diagnosis and therapeutic solutions (prescription drugs).

JP Schlingman

Related Information:

Largest Ever Protein Study Set to Revolutionize Cancer and Dementia Tests

Largest Dataset of Thousands of Proteins Marks Landmark Step for Research into Human Health

Groundbreaking Human Protein Study Launches

World’s Largest Proteomics Study Launched by UK Biobank

Disease Prediction and New Drugs: Why UK Biobank’s Huge New Protein Project Matters

Blood Proteins Predict Cancer Risk Seven Years in Advance, Studies Find

UK Researchers Use Proteomics to Identify Proteins That Indicate Presence of Cancer Years before Diagnosis

Proteomics May Hold Key to Understanding Aging’s Role in Chronic Diseases and Be Useful as a Clinical Laboratory Test for Age-related Diseases

Proteomics-based Clinical Laboratory Testing May Get a Major Boost as Google’s DeepMind Research Lab Is Making Public Its Entire AI Database of Human Protein Predictions

Woman Performs Do-it-yourself Fecal Transplant to Relieve Symptoms of IBS, Gets Donor’s Acne

Clinical laboratory scientists and microbiologists could play a role in helping doctors explain to patients the potential dangers of do-it-yourself medical treatments

Be careful what you wish for when you perform do-it-yourself (DIY) medical treatments. That’s the lesson learned by a woman who was seeking relief for irritable bowel syndrome (IBS). When college student Daniell Koepke did her own fecal transplant using poop from her brother and her boyfriend as donors her IBS symptoms improved, but she began to experience medical conditions that afflicted both fecal donors.

“It’s possible that the bacteria in the stool can influence inflammation in the recipient’s body, by affecting their metabolism and activating their immune response,” microbial ecologist Jack Gilbert, PhD, Professor and Associate Vice Chancellor at University of California San Diego (UC San Diego) told Business Insider. “This would cause shifts in their hormonal activity, which could promote the bacteria that can cause acne on the skin. We nearly all have this bacterium on skin, but it is often dormant,” he added.

A Fecal Microbiota Transplant (FMT) is a procedure where stool from a healthy donor is transplanted into the microbiome of a patient plagued by a certain medical condition.

Our guts are home to trillions of microorganisms (aka, microbes), known as the gut microbiota, that serve many important functions in the body. The microbiome is a delicate ecosystem which can be pushed out of balance when advantageous microbes are outnumbered by unfavorable ones. An FMT is an uncomplicated and powerful method of repopulating the microbiome with beneficial microbes.   

“With fecal microbiome transplants there is really compelling evidence, but the science is still developing. We’re still working on if it actually has benefits for wider populations and if the benefit is long-lasting,” said Gilbert in a Netflix documentary titled, “Hack Your Health: The Secrets of Your Gut.”

“The microbial community inside our gut can have surprising influences on different parts of our body,” microbial ecologist Jack Gilbert, PhD (above), of the Gilbert Lab at University of California San Diego told Business Insider. “Stools are screened before clinical FMTs, and anything that could cause major problems, such as certain pathogens, would be detected. When you do this at home, you don’t get that kind of screening.” Doctors and clinical laboratories screening patients for IBS understand the dangers of DIY medical treatments. (Photo copyright: University of California San Diego.)

Changing Poop Donors

When Koepke began experiencing symptoms of IBS including indigestion, stabbing pains from trapped gas and severe constipation, she initially turned to physicians for help.

In the Netflix documentary, Koepke stated that she was being prescribed antibiotics “like candy.” Over the course of five years, she completed six rounds of antibiotics per year, but to no avail.

She also changed her diet, removing foods that were making her symptoms worse. This caused her to lose weight and she eventually reached a point where she could only eat 10 to 15 foods. 

“It’s really hard for me to remember what it was like to eat food before it became associated with anxiety and pain and discomfort,” she said.

In an attempt to relieve her IBS symptoms, Koepke made her own homemade fecal transplant pills using donated stool from her brother. After taking them her IBS symptoms subsided and she slowly gained weight. But she developed hormonal acne just like her brother. 

Koepke then changed donors, using her boyfriend’s poop to make new fecal transplant pills. After she took the new pills, her acne dissipated but she developed depression, just like her boyfriend. 

“Over time, I realized my depression was worse than it’s ever been in my life,” Koepke stated in the documentary.

She believes the microbes that were contributing to her boyfriend’s depression were also transplanted into her via the fecal transplant pills. When she reverted to using her brother’s poop, her depression abated within a week.

Gilbert told Business Insider his research illustrates that people who suffer from depression are lacking certain bacteria in their gut microbiome.

“She may have had the ‘anti-depressant’ bacteria in her gut, but when she swapped her microbiome with his, her anti-depressant bacteria got wiped out,” he said.

FDA Approves FMT Therapy for Certain Conditions

Typically, the fecal material for an FMT procedure performed by a doctor comes from fecal donors who have been rigorously screened for infections and diseases. The donations are mixed with a sterile saline solution and filtered which produces a liquid solution. That solution is then administered to a recipient or frozen for later use. 

Fecal transplant methods include:

On November 30, 2022, the US Food and Drug Administration (FDA) approved the first FMT therapy, called Rebyota, for the prevention of Clostridioides difficile (C. diff.) in adults whose symptoms do not respond to antibiotic therapies. Rebyota is a single-dose treatment that is administered rectally into the gut microbiome at a doctor’s office. 

Then, in April of 2023, the FDA approved the use of a medicine called Vowst, which is the first oral FMT approved by the FDA.

According to the Cleveland Clinic, scientists are exploring the possibility that fecal transplants may be used as a possible treatment for many health conditions, including:

Doctors and clinical laboratories know that do-it-yourself medicine is typically not a good idea for obvious reasons. Patients seldom appreciate all the implications of the symptoms of an illness, nor do they fully understand the potentially dangerous consequences of self-treatment. Scientists are still researching the benefits of fecal microbiota transplants and hope to discover more uses for this treatment. 

—JP Schlingman

Related Information:

A Woman Gave Herself Poop Transplants Using Her Brother’s Feces to Treat Debilitating IBS. Then She Started Getting Acne Just Like Him.

FDA Approves First Orally Administered Fecal Microbiota Product for the Prevention of Recurrence of Clostridioides Difficile Infection

FDA Approves First FMT Therapy and Issues Guidance

Everything You Want to Know about Irritable Bowel Syndrome (IBS)

Stanford University Scientists Discover New Lifeform Residing in Human Microbiome

Microbiome Firm Raises $86.5 Million and Inks Deal to Sell Consumer Test Kits in 200 CVS Pharmacies

Researchers Find Health of Human Microbiome Greatly Influenced by Foods We Eat

New American Gastroenterological Association Guidelines for Managing Crohn’s Disease Suggest More Clinical Laboratory Tests and Fewer Colonoscopies

As doctors become more familiar with using biomarkers to monitor Crohn’s disease, clinical laboratories may play a greater role in that process

New evidence-based guidelines from the American Gastroenterological Association (AGA) that call for using specific biomarkers to help manage Crohn’s disease (CD) may decrease the number of invasive procedures patients must undergo and increase the role clinical laboratories play in monitoring the disease.

The new AGA guidelines “recommend using the C-reactive protein (CRP) biomarker in blood and the fecal calprotectin (FCP) biomarker in stool to measure inflammation levels and assess whether Crohn’s disease is in remission or active,” Medical News Today reported.

Crohn’s disease is a chronic inflammatory bowel disease (IBD) that causes inflammation in the digestive tract, primarily in the small and large intestine. The cause of the disease is unknown, but genetics may play a role.

Typically, CD patients must undergo repeated colonoscopies to monitor the disease’s progression or remission. This has long been standard practice. Now, however, “AGA recommends the use of biomarkers in addition to colonoscopy and imaging studies,” according to an AGA news release. This hints at a greater role for clinical laboratories in helping physicians manage patients with Crohn’s Disease.

“Patients’ symptoms do not always match endoscopic findings, so biomarkers are a useful tool to understand and monitor the status of inflammation and guide decision making in patients with Crohn’s disease,” said gastroenterologist Siddharth Singh, MD, Assistant Professor of Medicine at UC San Diego Health and a co-author of the new AGA guidelines.

The AGA’s new guidelines demonstrate how medical science is generating new insights about how multiple biomarkers can be associated for diagnosis/management of a disease in ways that change the standard of care, particularly if it can reduce invasive procedures for the patient by the use of less invasive methods (such as a venous blood draw instead of a colonoscopy).

The AGA published its new guidelines in the journal Gastroenterology titled, “AGA Clinical Practice Guideline on the Role of Biomarkers for the Management of Crohn’s Disease.”

Ashwin Ananthakrishnan MD

“Based on this guideline, biomarkers are no longer considered experimental and should be an integral part of inflammatory bowel disease care,” Ashwin Ananthakrishnan MD (above), a gastroenterologist at Massachusetts General Hospital and co-author of the guidelines, told Medical News Today. Under the new AGA guidelines, clinical laboratories will play a greater role in helping patients monitor their disease. (Photo copyright: Massachusetts General Hospital.)

Patient’s Needs Determine Biomarker vs Endoscopy Monitoring

AGA’s new guidelines could give patients a more comfortable, cost-effective, and possibly more efficient treatment plan to manage their Crohn’s disease. That’s even true if a patient’s Crohn’s disease is in remission.

With these new guidelines, Crohn’s disease patients in remission would only need their biomarkers to be checked every six to 12 months. Patients with active symptoms would need their biomarkers checked roughly every two to four months.

Biomarker testing can be seen as a useful addition to Crohn’s disease care rather than a full replacement of other forms of care. For example, the new AGA guidelines do not fully omit imaging studies and colonoscopies from treatment. Rather, they are recommended in treatment plans based on the patient’s needs.

In their Gastroenterology paper, the AGA authors wrote, “A biomarker-based monitoring strategy involves routine assessment of symptoms and noninvasive biomarkers of inflammation in patients with CD in symptomatic remission to inform ongoing management. In this situation, normalization of biomarkers is an adequate treatment target—asymptomatic patients with normal biomarkers would continue current management without endoscopy, whereas those with elevated biomarkers would undergo endoscopy.”

Fecal Matter Biomarkers

In speaking with Medical News Today on the benefits of using fecal biomarkers to assess a patient’s disease maintenance, gastroenterologist Jesse Stondell, MD, an Associate Clinical Professor at UC Davis Health, said, “If we start a patient on therapy, they’re not responding appropriately, they’re still having a lot of symptoms, we can check that fecal calprotectin test and get a very quick sense of if things are working or not.

“If the calprotectin is normal, it could be reassuring that there may be other reasons for their symptoms, and that the medicine’s working. But if they have symptoms, and a calprotectin is elevated, that’s a signal that we have to worry the medicine is not working. And that we need to change therapy in that patient,” he added.

“This is a win for Crohn’s disease patients,” Ashwin Ananthakrishnan, MD, a gastroenterologist at Massachusetts General Hospital and co-author of the AGA’s new guidelines, told Medical News Today. “Biomarkers are usually easier to obtain, less invasive, more cost-effective than frequent colonoscopies, and can be assessed more frequently for tighter disease control and better long-term outcomes in Crohn’s disease.”

Clinical laboratories should expect these guidelines to increase demand for the processing of blood or fecal matter biomarker testing. As Crohn’s disease monitoring becomes more dependent on biomarker testing, clinical labs will play a critical role in that process.

—Ashley Croce

Related Information:

Fewer Colonoscopies? New Crohn’s Guidelines Emphasize Blood, Stool Tests as Management Tool

AGA Clinical Practice Guideline on the Role of Biomarkers for the Management of Crohn’s Disease

Biomarker- vs Endoscopy-Based Monitoring Strategy in Crohn’s Disease

First Comprehensive Guideline on Using Biomarkers for Monitoring Crohn’s Disease

National Library of Medicine: Crohn’s Disease

Crohn’s Disease Is on the Rise

Research Showing Mesentery Is Single Organ, Not Separate Entities, Could Offer Clinical Laboratories New Methods to Diagnose Disease

Once thought to be separate components, the new model of a contiguous mesentery could lead to new medical laboratory tools for diagnosing and treating digestive diseases such as Crohn’s and colorectal cancer

For more than a century, pathology professionals have treated the network of tissue folds surrounding the human digestive system, known as the mesentery, as separate entities. However, new research  indicates the mesentery is in fact a single, continuous organ and therefore reverses that thinking. This could impact the way pathologists and medical laboratories currently perform diagnostics and testing of digestive diseases.

Dr. J. Calvin Coffey, Professor of Surgery at the University of Limerick, Ireland, and Dr. Peter O’Leary, PhD, MBBS, of the Royal College of Surgeons in Ireland (RCSI), published their findings in The Lancet Gastroenterology and Hepatology. (more…)

Clinical Laboratories Could Soon Diagnose 17 Diseases with a Single Breath Analyzer Test from Israel’s Institute of Technology

The Technion breathalyzer would give pathology groups and medical laboratories unprecedented ability to support physicians in diagnosing and treating cancers, chronic diseases, and other illnesses

Readers of Dark Daily know that several pathology research teams in America and the UK are developing breath analyzer tests that can detect everything from lung cancer to early-stage infections. Clinical laboratories will soon have a plethora of breath-related tests from which to choose. Now there’s a new kid on the block. A breathalyzer test that can detect up to 17 distinct cancerous, inflammatory, and neurological diseases!

Assuming the cost per test was at a competitive level to existing technologies, what would give this new diagnostic system appeal to physicians and patients alike is that it would be a non-invasive way to diagnose disease. Only a sample of the patient’s breath would be needed to perform the assays.

Researchers at the Israel Institute of Technology, or Technion, published the results of their study in ACS Nano, a monthly journal of the American Chemical Society devoted to “nanoscience and nanotechnology research at the interfaces of chemistry, biology, materials science, physics, and engineering.” (more…)

;