News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Potentially Fatal Fungus Invades Hospitals and Public Is Not Informed

Clinical laboratories and microbiologists will want to be on the alert for this deadly infectious agent that has killed patients through blood infections

Healthcare continues to struggle with the issue of how much to disclose to the public when new and deadly infectious agents are identified in a limited number of patients. Timely disclosure of new pathogens is a matter of great concern to clinical laboratory scientists, microbiologists, and clinical pathologists because their laboratories get specimens from infected patients and they must correctly identify rare or emerging pathogens to help minimize the spread of disease.

This is why many medical laboratory professionals were surprised to see national news headlines recently about a particularly deadly new form of a pathogen. The Centers for Disease Control and Prevention (CDC) has been dealing with one particularly nasty example of Candida auris, or C. auris. This “superbug” fungus has been appearing in hospitals and healthcare clinics across the globe and it has killed people.

The news coverage of C. auris focused on two elements:

  • First, how the pathogen was recognized by such healthcare agencies as the CDC.
  • Second, why CDC and others did not issue a public alert to hospitals, physicians, and other caregivers once it was known that C. auris was responsible for the death of several patients.

Once C. auris takes hold, it can enter a patient’s bloodstream or wounds and cause life- threatening complications like sepsis. When hospitals rooms are not properly decontaminated, life-threatening hospital-acquired infections (HAIs), also known as nosocomial infections, can occur.

Incidences of HAIs have been on the rise in the past few years. Dark Daily has reported on this disturbing trend many times.

The New York Times (NYT) reported on one such HAI that had tragic consequences. A patient admitted to Mount Sinai Hospital in New York for abdominal surgery was later discovered to have contracted C. auris. He was immediately isolated and spent 90 days in the hospital before passing away. Tests showed that Candida auris was everywhere in his room.

“Everything was positive—the walls, the bed, the doors, the curtains, the phones, the sink, the whiteboard, the poles, the pump,” Scott Lorin, MD, President and Chief Operating Officer at Mount Sinai Brooklyn Hospital, told the NYT. “The mattress, the bed rails, the canister holes, the window shades, the ceiling, everything in the room was positive,” he said.

The hospital had to use special cleaning equipment to sterilize the room and even found it necessary to tear out some ceiling and floor tiles to annihilate the fungus, the NYT reported.

Media News Coverage of ‘Culture of Secrecy’ 

When this deadly fungus first emerged in America, it was not disclosed to the public for a lengthy period of time. Then, when details of deaths in hospitals due to the superbug went public, the national news media reacted but then went silent. Why?

The New York Times (NYT) covered the debate over public disclosure of outbreaks involving drug-resistant infections at healthcare facilities in “Culture of Secrecy Shields Hospitals with Outbreaks of Drug-Resistant Infections.”

In that article, the NYT states that “under its agreement with states, the CDC is barred from publicly identifying hospitals that are battling to contain the spread of dangerous pathogens.” So, the CDC is prevented from revealing to the public the names and locations of facilities that are dealing with C. auris. And state governments typically do not share that information either. 

The NYT article also states, “The CDC declined to comment, but in the past officials have said their approach to confidentiality is necessary to encourage the cooperation of hospitals and nursing homes, which might otherwise seek to conceal infectious outbreaks.”

And that, “Those pushing for increased transparency say they are up against powerful medical institutions eager to protect their reputations, as well as state health officials who also shield hospitals from public scrutiny.”

“Who’s speaking up for the baby that got the flu from the hospital worker or for the patient who got MRSA from a bedrail? The idea isn’t to embarrass or humiliate anyone, but if we don’t draw more attention to infectious disease outbreaks, nothing is going to change,” Arthur Caplan, PhD (above), told the NYT. Caplan is Drs. William F and Virginia Connolly Mitty Professor and founding head of the Division of Medical Ethics at NYU School of Medicine in New York City. (Photo copyright: NYU Langone Health.)

Common Yeast Infection or Killer Superbug? Both!

C. auris grows as a common yeast infection. However, it can be life threatening if it enters the bloodstream.

“The average person calls Candida infections yeast infections,” William Schaffner, MD, Professor and Chair, Department of Preventative Medicine at Vanderbilt University Medical Center, told Prevention. “However, Candida auris infections are much more serious than your standard yeast infection. They’re a variety of so-called superbugs [that] can complicate the therapy of very sick people.”

The CDC reports that, as of May 31, 2019, there have been a total of 685 cases of C. auris reported in the US. The majority of those cases occurred in Illinois (180), New Jersey (124), and New York (336). Twenty more cases were reported in Florida, and eight other states—California, Connecticut, Indiana, Maryland, Massachusetts, Oklahoma, Texas, and Virginia—each had less than 10 confirmed cases of C. auris.

The CDC states the infection seems to be most prominent among populations that have had extended stays in hospitals or nursing facilities. Patients who have had lines or tubes such as breathing tubes, feeding tubes, or central venous catheters entering their body, and those who have recently been given antibiotics or antifungal medications, seem to be the most vulnerable to contracting C. auris.

The fungus typically attacks people who are already sick or have weakened immune systems, which can make it challenging to diagnose, the CDC notes. C. auris infections are typically diagnosed with special clinical laboratory testing of blood specimens or other body fluids. Infections have been found in patients of all ages, from infants to the elderly.

Data from the CDC indicates that C. auris can cause bloodstream infections, wound infections, and ear infections. Common symptoms that indicate a person has Candida auris include fever, chills, weakness, low blood pressure, and general malaise that do not improve with antibiotics.

“A patient’s temperature may go up, their blood pressure can go down, and they have complications of a pre-existing illness because of Candida auris,” Schaffner told Prevention.

The CDC reports that more than one in three patients with invasive C. auris dies. Even though the mortality rates for Candida auris are high, it is unclear whether patients are dying from the infection or from their underlying illnesses. “Whatever the cause, having Candida auris doesn’t help a patient in any way,” Schaffner noted.

The CDC states that it and its public health partners are working hard to discover more about this fungus, and to devise ways to protect people from contracting it. Average healthy people probably don’t need to worry about becoming infected with Candida auris. However, individuals who are at high risk, and healthcare professionals, microbiologists, and pathologists, should be on the alert for this new superbug strain of fungus. 

—JP Schlingman

Related Information:

A Mysterious Infection, Spanning the Globe in a Climate of Secrecy

Culture of Secrecy Shields Hospitals with Outbreaks of Drug-Resistant Infections

Candida auris: A Drug-Resistant Germ That Spreads in Healthcare Facilities

A Deadly Superbug Fungus Called Candida auris Has Been Detected in 12 States—Here’s What You Need to Know

A Deadly Fungal Infection Called Candida auris Is Spreading across the Globe, and No One Knows How to Stop It

Study: Colonized Candida auris Patients Shed Fungus via Skin

The Deadly Yeast Infection You Must Know About

What You Need to Know Candida auris, a Dangerous Fungal Infection That’s on the Rise

With Candida auris, a Lack of Transparency Could Make Things Worse

Could Proximity of Toilets to Sinks in Medical Intensive Care Units Contribute to Hospital-Acquired Infections?

Clinical Laboratory Test for Alzheimer’s Disease Gets Ever Closer to Reality

Scientists worldwide engaged in research to develop a biomarker for dementia are predicting success, though some say additional research will be needed

Could a blood test for Alzheimer’s disease soon be on clinical laboratory test menus nationwide? Perhaps so. A recent Associated Press (AP) article that was picked up by NBC News and other healthcare publications reported that experimental test results presented during the Alzheimer’s Association International Conference (AAIC) in July suggest the Holy Grail of dementia tests—one where the specimen can be collected in a doctor’s office during a routine screening exam—may be close at hand.

The AP story noted that “half a dozen research groups gave new results on various experimental tests, including one that seems 88% accurate at indicating Alzheimer’s risk.” And Richard Hodes, MD, Director of the National Institute on Aging, told AP, “In the past year, we’ve seen a dramatic acceleration in progress [on Alzheimer’s tests]. This has happened at a pace that is far faster than any of us would have expected.”

This could be a boon for medical laboratories seeking way to contribute more value to patient care. Especially among Alzheimer’s patients, who account for as many as 70% of all dementia cases.

Plasma Biomarker for Predicting Alzheimer’s

One of the experimental blood tests presented at the AAIC involved a 2018 study into “the potential clinical utility of plasma biomarkers in predicting brain amyloid-β burden at an individual level. These plasma biomarkers also have cost-benefit and scalability advantages over current techniques, potentially enabling broader clinical access and efficient population screening,” the researchers stated an article they published in Nature.

Dark Daily reported on this study in “Researchers in Two Countries Develop Blood Tests That Detect Alzheimer’s Decades Before Symptoms Appear; Could Eventually Give Clinical Laboratories a Diagnostic Tool,” June 4, 2018. The test “measures abnormal versions of the protein [amyloid beta] that forms the plaques in the brain that are the hallmark of Alzheimer’s,” the AP story reported.

AP also reported that Japanese scientists at the AAIC presented results of a validation test conducted on 201 people who had either Alzheimer’s, other types of dementia, or little or no symptoms. They found that the test “correctly identified 92% of people who had Alzheimer’s and correctly ruled out 85% who did not have it, for an overall accuracy of 88%.”

Akinori Nakamura, MD, PhD, of the National Center for Geriatrics and Gerontology in Obu, Japan, was a member of the research team and first author of the research paper. He told the AP that the test results “closely matched those from the top tests used now—three types of brain scans and a mental assessment exam.”

Eric McDade, DO (above), Associate Professor of Neurology at Washington University in St. Louis, told Neurology Today, “The results reported here provide a relatively high level of confidence given that this is a relatively well characterized population with an amyloid PET scan to provide confirmation of a significant level of amyloid plaque burden in the brain.” Could this level of physician confidence lead to a clinical laboratory test based on the plasma biomarker? (Photo copyright: Washington University.)

Koichi Tanaka is a Japanese engineer who won the Nobel prize winner for chemistry. He heads the Koichi Tanaka Research Lab at Shimadzu Corp. (OTCMKTS:SHMZF) in Kyoto, Japan, and was on the team that developed the Amyloid beta biomarker test that was presented at AAIC. He told Bloomberg, “Our finding overturned the common belief that it wouldn’t be possible to estimate amyloid accumulation in the brain from blood. We’re now being chased by others, and the competition is intensifying.”

But Tanaka cautions that the test needs further study before it is ready for clinical use, and that for now “it belongs in the hands of drug developers and research laboratories,” Bloomberg reported.

Other Studies into Developing an Alzheimer’s Biomarker

Alzheimer’s is usually diagnosed after symptoms appear, such as memory loss. To arrive at their diagnoses, doctors often rely on medical history, brain imaging (MRI, CT), PET, and measurement of amyloid in spinal fluid.  

An article published on Alzforum, a website and news service dedicated to the research and treatment for Alzheimer’s and other related disorders, noted a study by King’s College London researchers who, using mass spectrometry, “found a panel of biomarkers that predicted with almost 90% accuracy whether cognitively normal people had a positive amyloid scan.”

Nicholas Ashton, PhD, neuroscientist and Wallenberg Postdoctoral Fellow at University of Gothenburg in Sweden, and first author of the King’s College study, explained that “Amyloid-burden and neurofilament light polypeptide (NFL) peptides were important in predicting Alzheimer’s, but alone they weren’t as predictable as when we combined them with novel proteins related to amyloid PET.”

The researchers published their study earlier this year in Science Advances. “Using an unbiased mass spectrometry approach, we have found and replicated with high accuracy, specificity, and sensitivity a plasma protein classifier reflecting amyloid-beta burden in a cognitively unimpaired cohort,” the researchers wrote.

Meanwhile, researchers at Washington University School of Medicine St. Louis, along with the German Center for Neurodegenerative Diseases, a member of the Helmholtz Association, stated in a news release that a blood test they developed works by detecting leaks of NFL before the onset of symptoms. When the protein is found in cerebrospinal fluid, it could be a sign that Alzheimer’s may develop, as well as point to other neurodegenerative conditions such as multiple sclerosis, brain injury, or stroke, the researchers stated.  

“This is something that would be easy to incorporate into a screening test in a neurology clinic,” Brian Gordon, PhD, Assistant Professor of Radiology at Washington University’s Mallinckrodt Institute of Radiology, and an author of the study, stated in the news release.

These parallel studies into screening for Alzheimer’s by researchers worldwide are intriguing. The favorable results suggest that someday there may be a screen for Alzheimer’s using a clinical laboratory blood test.

With Alzheimer’s affecting nearly six million Americans of all ages, such an assay would enable clinical laboratories to help many people.

—Donna Marie Pocius

Related Information:

Scientists Close in On Blood Test for Alzheimer’s

Advances in the Global Search for Blood Markers for Alzheimer’s Disease and Other Dementias

A Blood Test Can Predict Dementia. Trouble Is, There’s No Cure

Plasma Biomarker for Amyloid Correlates with Alzheimer’s Progression, Study Finds

High Performance Plasma Amyloid-β Biomarkers for Alzheimer’s Disease

Panel Blood Markers Signals Amyloid in Brain

A Plasma Protein Classifier for Predicting Amyloid Burden for Preclinical Alzheimer’s Disease

Blood Test Detects Alzheimer’s Damage Before Symptoms; Test Also May Identify Neurodegeneration in Other Brain Diseases

Blood-Brain Barrier Breakdown is an Early Biomarker of Human Cognitive Dysfunction

Researchers in Two Countries Develop Blood Tests That Detect Alzheimer’s Decades Before Symptoms Appear Could Eventually Give Clinical Laboratories A Diagnostic Tool

Clinical Laboratories and Hospitals Test New Technology That Can Help Reduce Unacceptable Rates of Contaminated Blood Culture Specimens

Especially for busy hospital emergency departments, avoiding blood culture contamination is a constant challenge for those tasked with collecting blood culture specimens

Better, faster diagnosis and treatment of sepsis continues to be a major goal at hospitals, health networks, and other medical facilities throughout the United States. Yet microbiologists and clinical laboratory managers continue to be frustrated with how frequently contaminated blood culture specimens show up in the laboratory.

A recent poll of more than 200 healthcare professionals who attended a sponsored webinar hosted by Dark Daily, showed that nearly 10% of those who responded reported an overall blood culture contamination rate in their hospitals at above 4%.

However, the arrival of new technology may provide hospital staff with a way to reduce contamination rates in blood culture specimens, in ways that improve patient outcomes.

The effectiveness of a new tool, the Steripath Initial Specimen Diversion Device (ISDD), is being demonstrated in a growing number of prominent hospitals in different regions of the United States. What will be particularly intriguing to clinical laboratory professionals is that the ISDD is capable of collecting blood while minimizing the problems caused by human factors, micro-organisms, and skin plugs or fragments. This device was developed by Magnolia Medical Technologies of Seattle, Wash.

The ISDD isolates the initial 1.5 to 2.0 mL aliquot of the blood culture sample, which is most likely to be contaminated with microscopic skin fragments colonized with bacteria. The device diverts this initial aliquot into a sequestration chamber, mechanically isolating it from the rest of the sample, and then automatically opens an independent sterile pathway into blood culture collection bottles. 

Such technology may be welcomed by medical laboratory professionals based in hospitals and other healthcare facilities. That’s because it is the lab staff that typically identifies a contaminated blood culture specimen and must go back to the nurses, staffers, and physicians on the wards to have them redraw an acceptable specimen that will produce an accurate, reliable result. Patients under these circumstances generally continue on unnecessary broad-spectrum antibiotics, and their length of stays have been reported to increase by two days on average.

Problem of Decentralized Phlebotomy

One problem contributing to high blood culture rates is that, in many hospitals and health networks, phlebotomy has been decentralized and is no longer managed by the clinical laboratory.

“I’ve seen the havoc decentralized phlebotomy wreaks on contamination rates of blood culture rates,” stated Dennis Ernst, Director of the Center for Phlebotomy Education based in Mio, Mich. “That staffing model, which swept through the hospital industry in the late 1990s, may have looked good on paper, but I can count the number of facilities that have successfully decentralized on the fingers of one hand. And I don’t know of any decentralized setting that has an acceptable blood culture contamination rate.”

Dennis Ernst, MT(ASCP), NCPT(NCCT) (above), Director of the Center for Phlebotomy Education, shared his expertise during a recent webinar hosted by Dark Daily. Ernst considers blood culture contamination to be among the “low-hanging fruit” in every medical laboratory that can be easily and permanently corrected with the proper approach. (Photo copyright: Dennis Ernst.)

Ernst, a medical technologist and educator, has seen the difficulty in lowering contamination rates in a decentralized, multidisciplinary workforce. He has worked for more than 20 years advocating for best practices in the diagnostic blood collection industry and has helped clinical laboratory facilities achieve a 90% reduction in their contamination rates. Ernst considers blood culture contamination to be among the “low-hanging fruit” in every laboratory that can be easily and permanently corrected with the proper approach. 

“One statistic we’ve heard over and over again is that the American Society of Microbiology established the ‘threshold’ for blood culture contamination to be 3%,” Ernst said. “I believe strongly that a 1% contamination rate or less is what should be required and that it’s not only achievable, but sustainable.”

Regardless of staffing mix, blood culture contamination is a common problem in the emergency department, Ernst explained during his presentation, “Evidence-Based Technology to Reduce Blood Culture Contamination, Improve Patient Care, and Reduce Costs in Your Clinical Lab or Hospital,” which is available free for streaming.

Improving Patient Care and Reducing Avoidable Costs

With unnecessary antibiotic use, increased length of stay, and the cost of unnecessary laboratory testing at issue, hospitals are tracking blood culture collection results and exploring ways to reduce episodes of blood culture contamination. On these and other healthcare quality improvement aims, providers are publishing study results on contamination reduction and potential direct and indirect hospital cost savings. For example:

  • At the University of Nebraska, a prospective, controlled, matched-pair clinical study showed an 88% reduction in blood culture contamination with a 12-month sustained rate of 0.2% when Steripath was used by phlebotomists in the ED. The author estimated the institution would save approximately $1.8 million if the technology was adopted hospitalwide, reported an article in Clinical Infectious Diseases in July 2017.
  • Florida-based Lee Health system’s microbiology laboratory reported an 83% reduction in contamination rates comparing their standard method to ISDD for a seven-month trial period. Their systemwide potential cost avoidance estimates ranged from $4.35 million to nearly $11 million, reported an article in the Journal of Emergency Nursing in November 2018.
  • Researchers from Massachusetts General reported that ISDD is the single most effective intervention so far explored for reducing costs related to false-positive blood cultures, potentially saving the typical 250- to 400-bed hospital $1.9 million or $186 per blood culture and preventing 34 hospital-acquired conditions (including three C. difficile cases). The recent article “Model to Evaluate the Impact of Hospital-based Interventions Targeting False-Positive Blood Cultures on Economic and Clinical Outcomes” in the Journal of Hospital Infection explains more.

Blood Facilities Should be Tracking Their Contamination Rate

One of the biggest challenges faced during blood sample collection is making sure an organism is not inadvertently introduced into the blood. Therefore, importance has been placed on clinical laboratories and other healthcare providers developing policies and procedures to limit the introduction of likely contaminants.

“I believe most places monitor blood culture contamination, but they are not doing much that is effective to reduce it,” Ernst said. “That’s a real problem.”

To assist healthcare providers in blood culture quality improvement, the free webinar, “Evidence-Based Technology to Reduce Blood Culture Contamination, Improve Patient Care, and Reduce Costs in Your Clinical Lab or Hospital,” available on-demand through Dark Daily, can be downloaded by clicking here, or by pasting the URL “https://darkintelligenceprogramsondemand.uscreen.io/programs/evidence-based-technology-to-reduce-blood-culture-contamination-improve-patient-care-and-reduce-costs-in-your-clinical-lab-or-hospital” into a web browser.

This program, which polled more than 200 healthcare professionals, explores the clinical and economic significance of blood culture contamination, the downstream impact of false-positive blood cultures, and case-study evidence of sustained reductions in contamination.

—Liz Carey

Related Information:

Free On-Demand Webinar: Evidence-Based Technology to Reduce Blood Culture Contamination, Improve Patient Care and Reduce Costs

Magnolia Medical Captures $20M to Reduce Blood Culture Contamination

Reduction in Blood Culture Contamination Through Use of Initial Specimen Diversion Device

Model to Evaluate the Impact of Hospital-Based Interventions Targeting False-Positive Blood Cultures on Economic and Clinical Outcomes

Reducing Contamination of Blood Cultures: Consider Costs and Clinical Benefits

University of Nebraska Infectious Disease Researchers Study New Device That Could Help Clinical Laboratories and Phlebotomists Avoid Blood Culture Contamination and False Positive Results for Sepsis

Saarland University Researchers Use Blood Samples from Zoo Animals to Help Scientists Find Biomarkers That Speed Diagnoses in Humans

Using animal blood, the researchers hope to improve the accuracy of AI driven diagnostic technology

What does a cheetah, a tortoise, and a Humboldt penguin have in common? They are zoo animals helping scientists at Saarland University in Saarbrücken, Germany, find biomarkers that can help computer-assisted diagnoses of diseases in humans at early stages. And they are not the only animals lending a paw or claw.

In their initial research, the scientists used blood samples that had been collected during routine examinations of 21 zoo animals between 2016 and 2018, said a news release. The team of bioinformatics and human genetics experts worked with German zoos Saarbrücken and Neunkircher for the study. The project progresses, and thus far, they’ve studied the blood of 40 zoo animals, the release states.

This research work may eventually add useful biomarkers and assays that clinical laboratories can use to support physicians as they diagnose patients, select appropriate therapies, and monitor the progress of their patients. As medical laboratory scientists know, for many decades, the animal kingdom has been the source of useful insights and biological materials that have been incorporated into laboratory assays.

“Measuring the molecular blood profiles of animals has never been done before this way,” said Andreas Keller, PhD, Saarland University Bioinformatics Professor and Chair for Clinical Bioinformatics, in the news release. The Saarland researchers published their findings in Nucleic Acids Research, an Oxford Academic journal.

“Studies on sncRNAs [small non-coding RNAs] are often largely based on homology-based information, relying on genomic sequence similarity and excluding actual expression data. To obtain information on sncRNA expression (including miRNAs, snoRNAs, YRNAs and tRNAs), we performed low-input-volume next-generation sequencing of 500 pg of RNA from 21 animals at two German zoological gardens,” the article states.

Can Animals Improve the Accuracy of AI to Detect Disease in Humans?

In their research, Saarland scientists rely on advanced next-generation sequencing (NGS) technology and artificial intelligence (AI) to sequence RNA and microRNA. Their goal is to better understand the human genome and cause of diseases.

However, the researchers perceived an inability for AI and machine learning to discern real biomarker patterns from those that just seemed to fit.

“The machine learning methods recognize the typical patterns, for example for a lung tumor or Alzheimer’s disease. However, it is difficult for artificial intelligence to learn which biomarker patterns are real and which only seem to fit the respective clinical picture. This is where the blood samples of the animals come into play,” Keller states in the news release.

“If a biomarker is evolutionarily conserved, i.e. also occurs in other species in similar form and function, it is much more likely that it is a resilient biomarker,” Keller explained. “The new findings are now being incorporated into our computer models and will help us to identify the correct biomarkers even more precisely in the future.”

Andreas Keller, PhD (left), and zoo director Richard Francke (right), hold a pair of radiated tortoises that participated in the Saarland University study. (Photo copyright: Oliver Dietze/Saarland University.)

Microsampling Aids Blood Collection at Zoos

The researchers used a Neoteryx Mitra blood collection kit to secure samples from the animals and volunteers. Dark Daily previously reported on this microsampling technology in, “Innovations in Microsampling Blood Technology Mean More Patients Can Have Blood Tests at Home, and Clinical Laboratories May Advance Toward Precision Medicine Goals,” November 28, 2018.

“Because blood can be obtained in a standardized manner and miRNA expression patterns are technically very stable, it is easy to accurately compare expression between different animal species. In particular, dried blood spots or microsampling devices appear to be well suited as containers for miRNAs,” the researchers wrote in Nucleic Acids Research.

Animal species that participated in the study include:

Additionally, human volunteers contributed blood specimens for a total of 19 species studied. The scientists reported success in capturing data from all of the species. They are integrating the information into their computer models and have developed a public database of their findings for future research.

“With our study, we provide a large collection of small RNA NGS expression data of species that have not been analyzed before in great detail. We created a comprehensive publicly available online resource for researchers in the field to facilitate the assessment of evolutionarily conserved small RNA sequences,” the researchers wrote in their paper.         

Clinical Laboratory Research and Zoos: A Future Partnership?

This novel involvement of zoo animals in research aimed at improving the ability of AI driven diagnostics to isolate and identify human disease is notable and worth watching. It is obviously pioneering work and needs much additional research. At the same time, these findings give evidence that there is useful information to be extracted from a wide range of unlikely sources—in this case, zoo animals.

Also, the use of artificial intelligence to search for useful patterns in the data is a notable part of what these researchers discovered. It is also notable that this research is focused on sequencing DNA and RNA of the animals involved with the goal of identifying sequences that are common across several species, thus demonstrating the common, important functions they serve.

In coming years, those clinical laboratories doing genetic testing in support of patient care may be incorporating some of this research group’s findings into their interpretation of certain gene sequences.

—Donna Marie Pocius

Related Information:

Blood Samples from the Zoo Help Predict Diseases in Humans

The sncRNA Zoo: A Repository for Circulating Small Noncoding RNAs in Animals

ASRA Public Database of Small Non-Coding RNAs

Innovations in Microsampling Blood Technology Mean More Patients Can Have Blood Tests at Home and Clinical Laboratories May Advance Toward Precision Medicine Goals

Federal Investigations into Alleged Kickback Schemes between Hospitals and Physicians Increase in Number and Scope

Hospitals and other organizations are finding ways to pay physicians for referrals in ways that don’t always look like kickbacks

Hospitals nationwide are being scrutinized by the federal Office of the Inspector General (OIG) for allegedly violating federal anti-kickback statutes. This will be of interest to clinical pathology laboratories that have been under a similar spotlight for various referral-kickback schemes and arrangements in the last few years, which Dark Daily repeatedly covered.

Kaiser Health News (KHN) recently reported on investigations by the OIG into hospitals allegedly offering unusually high salaries and other perks to specialists because they attract highly profitable business.

In the KHN article, titled, “Hospitals Accused of Paying Doctors Large Kickbacks in Quest for Patients,” Senior Correspondent Jordan Rau describes one investigation of salaries that involved certain high-profile specialists at Wheeling Hospital, in Wheeling, W.Va.

Wheeling, KHN reported, paid one anesthesiologist $1.2 million per year, which, Rau notes, is higher than the salaries of 90% of the pain management specialists around the country. Rau went on to describe how Wheeling also paid one obstetrician-gynecologist $1.3 million per year, and a cardiothoracic surgeon $770,000 per year along with 12 weeks of vacation time.

In each of those cases, the whistleblower who prompted the qui tam investigation reported that the specialists’ various departments were frequently in the red, reported KHN.

“The problem, according to the government, is that the efforts run counter to federal self-referral bans and anti-kickback laws that are designed to prevent financial considerations from warping physicians’ clinical decisions,” wrote Rau.

Wheeling not only contests the lawsuits brought against it, but also has filed a countersuit against the whistleblower. KHN said the hospital claims “its generous salaries were not kickbacks but the only way it could provide specialized care to local residents who otherwise would have to travel to other cities for services such as labor and delivery that are best provided near home.”

“We are confident that, if this case goes to a trial, there will be no evidence of wrongdoing—only proof that Wheeling Hospital offers the Northern Panhandle Community access to superior care, [and] world class physicians and services,” KHN reported Gregg Warren (above), Vice President of Marketing and Public Relations at Wheeling Hospital, saying in a statement. (Photo copyright: LinkedIn.)

OIG’s Fraud and Abuse Laws: A Roadmap for Physicians

The KHN article mentions five laws the OIG lists on its website that are particularly important for physicians to be aware of. They include the:

  • False Claims Act: states that it’s illegal to file false Medicare or Medicaid claims.
  • Anti-Kickback Statute: states that paying for referrals is illegal, that physicians can’t provide free or discounted services to uninsured people, and that money and gifts from drug and device makers to physicians are prohibited.
  • Stark Law(physician self-referral): says that referrals to entities with whom the physician has a familial or financial relationship are off-limits.
  • Exclusion Statue: describes who cannot participate in federal programs, such as Medicare.
  • Civil Monetary Penalties Law: authorizes the Secretary of Health and Human Services, which operates the OIG, to impose penalties in cases of fraud and abuse that involve Medicare or Medicaid.

“Together, these rules are intended to remove financial incentives that can lead doctors to order up extraneous tests and treatments that increase costs to Medicare and other insurers and expose patients to unnecessary risks,” KHN said.

Other Hospitals Under Investigation

Wheeling Hospital is not the only healthcare institution facing investigation. The Dallas Morning News (DMN) reported on a case involving Forest Park Medical Center (FPMC) in Dallas that resulted in the conviction of seven defendants, including four doctors. Prosecutors outlined the scheme in court, saying that FPMC illegally paid for surgeries.

“Prosecutors said the surgeons agreed to refer patients to the Dallas hospital in exchange for money to market their practices,” DMN reported, adding “Patients were a valuable commodity sold to the highest bidder, according to the government.” 

One of the convicted physicians, Michael Rimlawi, MD, told DMN, “I’m in disbelief. I thought we had a good system, a fair system.” His statement may indicate the level to which some healthcare providers at FPMC did not clearly understand how anti-kickback laws work.

“The verdict in the Forest Park case is a reminder to healthcare practitioners across the district that patients—not payments—should guide decisions about how and where doctors administer treatment,” US Attorney Erin Nealy Cox told DMN.

Know What Is and Is Not a Kickback

Both the Wheeling Hospital investigation and the Forest Park Medical Center case make it clear that kickbacks don’t always look like kickbacks. Becker’s Hospital Review published an article titled “Four Biggest Anti-Kickback Settlements Involving Hospitals in 2018” that details cases in which hospitals chose to settle.

These four incidents involved hospitals in Tennessee, Montana, Pennsylvania, and New York. This demonstrates that kickback schemes take place nationwide. And they show that violations of the Stark Law, the False Claims Act, and the Anti-Kickback Statute can happen in numerous ways.

Whether in a clinical laboratory or an enterprisewide health network, violating laws written to prevent money—rather than appropriate patient care—from being the primary motivator in hiring decisions, may result in investigation, charges, fines, and even conviction.

“If we’re going to solve the healthcare pricing problem, these kinds of practices are going to have to go away,” Vikas Saini, MD, President of the Lown Institute, a Massachusetts nonprofit that advocates for affordable care, told KHN.

Though these recent OIG investigations target hospitals, clinical laboratory leaders know from past experience that they also must be vigilant and ensure their hiring practices do not run afoul of anti-kickback legislation.

—Dava Stewart

Related Information:

Hospitals Accused of Paying Doctors Large Kickbacks in Quest for Patients

A Roadmap for New Physicians: Fraud and Abuse Laws

Surgeons, hospital owner convicted in massive kickback scheme involving Forest Park Medical Center

Four Biggest Anti-Kickback Settlements Involving Hospitals in 2018

Clinical Laboratory Compliance Practices Under Pressure as Federal Spotlight Is Aimed at Common Fraud and Abuse Schemes; Penalties for Violations Surge

Biodiagnostic Laboratory Services Leaders Sentenced to Prison in $100-Million Lab Test Kickback Scheme That Also Led to Convictions of 38 Physicians Does New Opioid Law Require Clinical Laboratories to Change How They Pay Sales Employees?

;