New Washington University Medicine Blood Test Can Diagnose and Track Progression of Alzheimer’s Disease with 92% Accuracy
Findings could lead to clinical laboratory test that can both track the disease’s progress and differentiate it from other forms of dementia
Another research study is underway with hopes of developing a new clinical laboratory blood test to aid in the diagnoses of Alzheimer’s disease and help physicians determine the best course of treatment.
Researchers at the Washington University School of Medicine (WashU Medicine) in St. Louis and Lund University in Sweden have developed a test that focuses on the presence of a protein called MTBR-tau243, a potential biomarker for Alzheimer’s. This protein is correlated to the toxic accumulation of tau aggregates in the brain and the severity of the disease, according to a WashU new release.
Cognitive tests and brain imaging are also used to diagnose the condition. However, existing tests cannot establish how far the illness has progressed. Alzheimer’s therapies are most effective during early stages, so determining the disease’s progression could provide insights doctors need to devise the most effective treatment protocols.
Washington University’s new blood test that identifies MTBR-tau243 protein could lead to new biomarkers as well as identifying how far the disease has progressed.
“This blood test clearly identifies Alzheimer’s tau tangles [aka, neurofibrillary tangles], which is our best biomarker measure of Alzheimer’s symptoms and dementia,” said co-senior author Randall J. Bateman, MD, professor of neurology at WashU Medicine in the WashU news release.
The researchers published their findings in the journal Nature Medicine titled, “Plasma MTBR-tau243 Biomarker Identifies Tau Tangle Pathology in Alzheimer’s Disease.”

“In clinical practice right now, we don’t have easy or accessible measures of Alzheimer’s tangles and dementia, and so a tangle blood test like this can provide a much better indication if the symptoms are due to Alzheimer’s and may also help doctors decide which treatments are best for their patients,” said co-senior author Randall J. Bateman, MD, professor of neurology at WashU Medicine in a news release. (Photo copyright: Washington University.)
Distinguishing between Alzheimer’s and Other Forms of Dementia
The WashU scientists tested the study participants in three main stages of Alzheimer’s disease:
- Pre-symptomatic.
- Early stage with mild cognitive impairment.
- Late symptomatic where patients have been diagnosed with dementia.
The study included 108 volunteers from WashU Medicine’s Charles F. and Joanne Knight Alzheimer Disease Research Center and a subset of 55 people from the Swedish BioFINDER-2 study, which aims to discover key mechanisms in neurodegenerative disorders. The scientists validated their results in an independent dataset involving 739 other people in the BioFINDER-2 database. The patient information used for the study represented patients from all stages of the disease.
Alzheimer’s disease involves an accumulation of amyloid into plaques in the brain, which turn into tangles of tau proteins. When these tau tangles become detectable, cognitive symptoms begin to occur and exacerbate as the tangles spread. WashU’s new blood test can detect MTBR-tau243 levels in the brain with 92% accuracy. The researchers also found that MTBR-tau243 levels were significantly higher for patients in the mild cognitive stage of the disease and up to 200 times higher for patients in the late symptomatic stage.
“MTBR-tau243 is a chipped (off) piece of the protein in Alzheimer’s tau tangles,” Bateman told Medical News Today. “The blood test measures this piece of tau tangles in the blood as a measure of how many tangles are in the brain.”
The researchers also found that MTBR-tau243 levels were normal in patients with cognitive symptoms attributed to diseases other than Alzheimer’s, suggesting that the test can distinguish Alzheimer’s dementia from other forms of dementia.
“We’re about to enter the era of personalized medicine for Alzheimer’s disease,” said Kanta Horie, PhD, voluntary research associate professor of neurology at WashU Medicine, co-first and co-corresponding author of the study, in the WashU news release.
More Studies Needed
According to the Centers for Disease Control and Prevention (CDC), Alzheimer’s is the seventh leading causes of death in the US. It accounted for more than 120,000 deaths in 2022, the most recent year for available data. With the ebbing of COVID-19, which was ranked number four in 2022, Alzheimer’s is assumed to be higher in ranking for more recent years.
Washington University’s new blood test for Alzheimer’s may one day enable earlier detection of the disease, earlier intervention, and slowing of its advancement. However, more research and trials are needed into the theory behind this study.
“The initial study needs to be replicated in larger and more diverse populations to confirm its accuracy and reliability across different demographics, ethnicities, and stages of the disease,” Manisha Parulekar, MD, director of the Division of Geriatrics at Hackensack University Medical Center, told Medical News Today. “This includes testing individuals with other neurological conditions to ensure specificity. Clear and standardized protocols for blood collection, processing, and analysis must be established to ensure consistent and reproducible results across different laboratories and healthcare settings.”
—JP Schlingman