News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

UCSF Researchers Identify Genetic Mutation That Promotes an Asymptomatic Response in Humans to COVID-19 Infection

Understanding why some people display no symptoms during a COVID-19 infection could lead to new precision medicine genetic tests medical labs could use to identify people with the mutated gene

New research from the University of California San Francisco (UCSF) may explain why some people could get COVID-19 but never test positive on a clinical laboratory test or develop symptoms despite exposure to the SARS-CoV-2 coronavirus.

According to the UCSF study, variations in a specific gene in a system of genes responsible for regulating the human immune system appears to be the factor in why about 10% of those who become infected with the virus are asymptomatic.

These scientific insights did not receive widespread news coverage but will be of interest to clinical laboratory managers and pathologists who oversee SARS-CoV-2 testing in their labs.

Jill Hollenbach, PhD

“Some people just don’t have symptoms at all,” Jill Hollenbach, PhD (above), Professor of Neurology at UCSF’s Weill Institute for Neurosciences and lead researcher in the study, told NBC News. “There’s something happening at a really fundamental level in the immune response that is helping those people to just completely wipe out this infection.” Identifying a genetic reason why some people are asymptomatic could lead to new precision medicine clinical laboratory diagnostics for COVID-19. (Photo copyright: Elena Zhukova /University of California San Francisco.)

Fortunate Gene Mutation

According to the Centers for Disease Control and Prevention’s (CDC) COVID Data Tracker, as of April 5, 2023, a total of 104,242,889 COVID-19 cases have been reported in the United States. However, according to a CDC Morbidity and Mortality Weekly Report (MMWR), “Traditional methods of disease surveillance do not capture all COVID-19 cases because some are asymptomatic, not diagnosed, or not reported; therefore, [knowing the true] proportion of the population with SARS-CoV-2 antibodies (i.e., seroprevalence) can improve understanding of population-level incidence of COVID-19.”

Jill Hollenbach, PhD, lead researcher in the UCSF study and Professor of Neurology at UCSF’s Weill Institute for Neurosciences, runs the Hollenbach Lab at UCSF. The lab specializes in the study of two important elements in human immune response:

She also participates in the COVID-19 HLA and Immunogenetics Consortium, a group of academic researchers, clinical laboratory directors, journal editors, and others who examine the role of HLA variations in determining COVID-19 risk.

Hollenbach’s research identified an HLA variant—known as HLA-B*15:01—that causes the human immune system to react quickly to SARS-CoV-2 and “basically nuke the infection before you even start to have symptoms,” she told NPR.

“It’s definitely luck,” she added. “But, you know, this [gene] mutation is quite common. We estimate that maybe one in 10 people have it. And in people who are asymptomatic, that rises to one in five.”

The researchers published their findings on the medRxiv preprint server titled, “A Common Allele of HLA Mediates Asymptomatic SARS-CoV-2 Infection.” The UCSF study has not yet been peer-reviewed.

UCSF Study Methodology

“HLA variants are among the strongest reported associations with viral infections,” the UCSF study notes. So, the researchers theorized that HLA variations play a role in asymptomatic SARS-CoV-2 infections as well.

To conduct their study, shortly after the SARS-CoV-2 outbreak in 2020, the researchers recruited approximately 30,000 volunteer bone marrow donors from the National Marrow Donor Program to respond to periodic questions via a smartphone app or website. Because HLA variations can determine appropriate matches between donors and recipients, the database includes information about their HLA types.

Each week, respondents were asked to report if they had been tested for SARS-CoV-2. Each day, they were asked to report whether they had symptoms associated with COVID-19. “We were pretty stringent in our definition of asymptomatic,” Hollenbach told NBC News. “[The respondents couldn’t] even have a scratchy throat.”

The researchers eventually identified a cohort of 1,428 people who had tested positive for SARS-CoV-2 between February 2020 and April 30, 2021, before vaccines were widely available. Among these individuals, 136 reported no symptoms for two weeks before or two weeks after a positive test.

“Overall, one in five individuals (20%) who remained asymptomatic after infection carried HLA-B*15:01, compared to 9% among patients reporting symptoms,” the researchers wrote in their medRxiv preprint. Study participants with two copies of the gene were more than eight times more likely to be asymptomatic.

The UCSF researchers also looked at four other HLA variants and found none to be “significantly associated” with lack of symptoms. They confirmed their findings by reproducing the HLA-B association in two additional independent cohorts, one from an earlier study in the UK and the other consisting of San Francisco-area residents.

Individuals in the latter group had either tested positive for SARS-CoV-2 or reported COVID symptoms, and their DNA was analyzed to determine their HLA types.

Pre-existing T-Cell Immunity May Reduce Severity of COVID-19 Infection

The UCSF researchers also attempted to determine how HLA-B*15:01 plays a role in knocking out SARS-CoV-2 infections. They noted previous research that indicated previous exposure to seasonal coronaviruses, such as common cold viruses, could limit the severity of COVID-19. The scientists hypothesized that pre-existing T-cell immunity in HLA-B carriers may be the key.

The COVID-19 HLA and Immunogenetics Consortium website describes how HLA and T-cells work together to ward off disease. HLA “proteins are found on the surface of all cells except red-blood cells.” They’re “like windows into the inner workings of a cell,” and T-cells use the molecules to determine the presence of foreign proteins that are likely signs of infection. “Activated T-cells can kill infected cells, or activate B-cells, which produce antibodies in response to an infection,” the website explains.  

Hollenbach’s research team analyzed T-cells from pre-pandemic individuals and observed that in more than half of HLA-B carriers, the T-cells were reactive to a SARS-CoV-2 peptide. The scientists corroborated the hypothesis by examining crystal structures of the HLA-B*15:01 molecule in the presence of coronavirus spike peptides from SARS-CoV-2 and two other human coronaviruses: OC43-CoV and HKU1-CoV.

“Altogether, our results strongly support the hypothesis that HLA-B*15:01 mediates asymptomatic COVID-19 disease via pre-existing T-cell immunity due to previous exposure to HKU1-CoV and OC43-CoV,” the researchers wrote.

Can Genes Prevent COVID-19 Infections?

Meanwhile, researchers at The Rockefeller University in New York City are attempting to go further and see if there are mutations that prevent people from getting infected in the first place. NPR reported that they were seeking participants for a study seeking to identify so-called “superdodger” genes.

“You fill out a questionnaire online about your exposures to SARS-CoV-2,” explained Jean-Laurent Casanova, MD, PhD, professor, senior attending physician, and head of the St. Giles Laboratory of Human Genetics of Infectious Diseases at The Rockefeller University, who is leading the study.

Study participants identified as possibly having superdodger genes receive a kit designed to collect saliva samples, after which the researchers sequence the respondents’ genomes. “We hope that in a group of 2,000 to 4,000 people, some people will have genetic mutations that tell us why they’re resistant to infection,” Casanova told NPR.

All this genetic research is in very early stages. But results are promising and may lead to new precision medicine clinical laboratory tests for identifying people who are predisposed to having an asymptomatic response to COVID-19 infection. That in turn could help scientists learn how to moderate or even eliminate symptoms in those unfortunate people who suffer the typical symptoms of the disease.   

—Stephen Beale

Related Information:

A Common Allele of HLA Mediates Asymptomatic SARS-CoV-2 Infection

What People with ‘Super Immunity’ Can Teach Us about COVID and Other Viruses

So, You Haven’t Caught COVID Yet. Does That Mean You’re a Superdodger?

If You Haven’t Gotten COVID Yet, This Might Be Why

Trends in Number of COVID-19 Cases and Deaths in the US Reported to CDC, by State/Territory

UC San Francisco Researchers Discover Why Some People Are Asymptomatic When Infected with COVID-19

Seroprevalence of Infection-Induced SARS-CoV-2 Antibodies—United States, September 2021–February 2022

University of Washington Researchers Use Genomic Analysis to Track Shigella Infections as Decreased Cost of Gene Sequencing Aids Public Health Research

Another study in the United Kingdom that also used genomic analysis to understand drug-resistant Shigella produced findings that may be useful for microbiologists and medical laboratory scientists

From the onset of an infectious disease outbreak, public health officials, microbiologists, and clinical laboratory managers find it valuable to trace the origin of the spread back to the “index case” or “patient zero”—the first documented patient in the disease epidemic. Given the decreased cost of genomic analysis and improved accuracy of gene sequencing, infectious disease researchers are finding that task easier and faster than ever.

One recent example is a genomic study conducted at University of Washington (UW) in Seattle that enabled researchers to “retrace” the origin and spread of a “multidrug-resistant Shigellosis outbreak” from 2017 to 2022. “The aim of the study was to better understand the community transmission of Shigella and spread of antimicrobial resistance in our population, and to treat these multi-drug resistant infections more effectively,” the UW scientists stated in a new release.

Shigellosis (aka, bacillary dysentery) is a highly contagious disease of the intestines that can lead to hospitalization. Symptoms include fever, stomach cramps, diarrhea, dysentery, and dehydration.

“Additional analysis of the gut pathogen and its transmission patterns helped direct approaches to testing, treatment, and public health responses,” the UW news release states.

Usually prevalent in countries with public health and sanitation limitations, the “opportunistic” Shigella pathogen is now being seen in high-income countries as well, UW reported.

The researchers published their findings in Lancet Infectious Diseases, titled, “Genomic Reconstruction and Directed Interventions in a Multidrug-Resistant Shigellosis Outbreak in Seattle, WA, USA: A Genomic Surveillance Study.”

Ferric Fang, MD

“You can’t really expect an infectious disease to remain confined to a specific at-risk population. [Shigella infections are] very much an emerging threat and something where our public health tools and therapeutic tools have significant limitations,” infectious disease specialist Ferric Fang, MD (above) told CIDRAP News. Fang is a UW professor of Microbiology and Clinical Laboratory Medicine and a corresponding author of the UW study. (Photo copyright: University of Washington.)

Why are Shigella Cases Increasing?

The US Centers for Disease Control and Prevention (CDC) records more than 450,000 shigellosis infections each year in the US. The most common species in the US, according to CDC statistics, is Shigellaa sonnei.

Other members of the genus include:

Generally, Shigella infects children, travelers, and men who have sex with men (MSM), the CDC noted.

The UW researchers were motivated to study Shigella when they noticed an uptick in drug-resistant shigellosis cases in Seattle’s homeless population in 2020 at the beginning of the COVID-19 pandemic, Center for Infectious Disease Research and Policy News (CIDRAP News) reported.

“Especially during the pandemic, a lot of public facilities were closed that homeless people were used to using,” infectious disease specialist Ferric Fang, MD, told CIDRAP News. Fang is Professor of Microbiology and Laboratory Medicine at University of Washington and corresponding author of the UW study.

The researchers studied 171 cases of Shigella identified from 2017 to 2022 by clinical laboratories at Harborview Medical Center and UW Medical Center in Seattle. According to CIDRAP News, the UW researchers found that:

  • 46% were men who have sex with men (MSM).
  • 51% were people experiencing homelessness (PEH).
  • Fifty-six patients were admitted to the hospital, with eight to an intensive care unit.
  • 51% of isolates were multi-drug resistant (MDR).

Whole-Genome Sequencing Reveals Origin

The UW scientists characterized the stool samples of Shigella isolates by species identification, phenotypic susceptibility testing, and whole-genome sequencing, according to their Lancet Infectious Diseases paper. The paper also noted that 143 patients received antimicrobial therapy, and 70% of them benefited from the treatment for the Shigella infection.

Whole-genome sequencing revealed that two strains of Shigella (S. flexneri and S. sonnei) appeared first in Seattle’s MSM population before infecting the PEM population.

The genomic analysis found the outbreak of drug-resistant Shigella had international links as well, according to CIDRAP News:

  • One S. flexneri isolate was associated with a multi-drug resistant (MDR) strain from China, and
  • S. sonnei isolates resembled a strain characteristic of a current outbreak of MDR Shigella in England.

“The most prevalent lineage in Seattle was probably introduced to Washington State via international travel, with subsequent domestic transmission between at-risk groups,” the researchers wrote.

“Genomic analysis elucidated not only outbreak origin, but directed optimal approaches to testing, treatment, and public health response. Rapid diagnostics combined with detailed knowledge of local epidemiology can enable high rates of appropriate empirical therapy even in multidrug-resistant infection,” they continued.

UK Shigella Study Also Uses Genomics

Another study based in the United Kingdom (UK) used genomic analysis to investigate a Shigella outbreak as well.

Motivated by a UK Health Security Agency report of an increase in drug-resistance to common strains since 2021, the UK researchers studied Shigella cases from September 2015 to June 2022.

According to a paper they published in Lancet Infectious Diseases, the UK researchers “reported an increase in cases of sexually transmitted S. flexneri harboring blaCTX-M-27 (an antibiotic-resistant gene) in England, which is known to confer resistance to third-generation cephalosporins (antibiotics),” the researchers wrote.

Their analysis of plasmids (DNA with genes having antibiotic resistance) revealed a link in two drug-resistant Shigella strains at the same time, CIDRAP News explained.

“Our study reveals a worsening outlook regarding antimicrobial-resistant Shigella strains among MSM and highlights the value of continued integration of genomic analysis into surveillance and research,” the UK-based scientists wrote.

Current challenges associated with Shigella, especially as it evades treatment, may continue to demand attention from microbiologists, clinical laboratory scientists, and infectious disease specialists. Fortunately, use of genomic analysis—due to its ongoing improvements that have lowered cost and improved accuracy—has made it possible for public health researchers to better track the origins of disease outbreak and spread.    

Donna Marie Pocius

Related Information:

Genomic Reconstruction and Directed Interventions in a Multidrug-Resistant Shigellosis Outbreak in Seattle, Washington, USA: a Genomic Surveillance Study.

Genomics Aids Study of Seattle 2017-22 Shigella Outbreak

Q/A: Shigella—Shigellosis

A Spotlight on Growing Threat of Drug-Resistant Shigella

Emergence of Extensively Drug-Resistant and Multidrug-Resistant Shigella flexneri serotype 2a Associated with Sexual Transmission Among Gay, Bisexual, and Other Men Who Have Sex with Men, in England: A Descriptive Epidemiological Study

With New Daily Monkeypox Cases Now in Single Digits, Can We Declare the Mission Accomplished?

Coordinating at-home testing for monkeypox may provide opportunities for clinical laboratories to add value for their physician clients

Microbiologists and clinical laboratory managers who oversee medical laboratory tests for monkeypox (aka, mpox) will be interested to learn that, according to the US Centers of Disease Control (CDC), cases per day have dropped into the single digits.

The United States led the world in cases during the 2022-2023 outbreak, according to the most recent CDC statistics. As of February 15, the US has reported 30,193 cases of monkeypox with 32 deaths.

Nevertheless, January 31 was the day that the US public health emergency involving monkeypox officially expired. Data from the World Health Organization shows the number of daily monkeypox cases in most countries around the world is declining, although numbers of cases are still increasing in some South American countries.

The global monkeypox outbreak appears to have slowed considerably, but are we out of the woods?

Jonathan Mermin, MD

“There were concerns that there would be ongoing transmission and that ongoing transmission would become endemic in the United States like other STIs: gonorrhea, chlamydia, syphilis. We have not seen that occur,” Jonathan Mermin, MD (above), Director of the National Center for HIV, Viral Hepatitis, STD, and TB Prevention at the CDC, told CNN.” We are now seeing three to four cases a day in the United States, and it continues to decline. And we see the possibility of getting to zero as real.” This decline in monkeypox test corresponds with a similar decline in COVID-19 clinical laboratory testing as well. (Photo Copyright: CDC.)

Untried Vaccine and At-home Testing for Monkeypox

When the monkeypox outbreak began in May of 2022, there were concerns about the US’ level of preparedness for dealing with a second pandemic while also battling COVID-19. But monkeypox was not entirely unknown to the scientific and medical communities.

Monkeypox first appeared in 1958 amongst a colony of monkeys being kept for research. The origin of the disease is not known. According to the CDC, the first reported human case of monkeypox was in 1970. Prior to the 2022 outbreak, most cases were found in central and western African countries. Cases outside of those areas could be traced back to travel from those specific countries.

When cases of monkeypox first appeared in the US, public health officials were concerned about the availability of testing, vaccines, and treatments. As CNN reported, though there was a new vaccine available, its effectiveness against monkeypox had never been tested on humans.

That treatment, known as TPOXX (Tecovirimat), was an antiviral drug approved by the FDA in 2018 to treat smallpox in adults and children, according to an FDA factsheet. The drug was difficult to obtain, and it took until August of 2022 for the federal government to declare monkeypox a public health emergency. That allowed it to deploy emergency funds towards fighting the outbreak.

The US government eventually set up a task force to address the outbreak led by Robert Fenton Jr. from the Federal Emergency Management Agency (FEMA), and Demetre Daskalakis, MD, Director of the CDC’s Division of HIV/AIDS Prevention (DHAP) in the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP).

The demographic found to be at the highest risk of monkeypox infection were men who have sex with other men. According to MedPage Today, “Daskalakis had both pandemic experience as former senior lead on equity in COVID-19 data and engagement for the New York City Department of Health and Mental Hygiene and an ‘in’ with the LGBTQ+ community from his work in HIV prevention and his transparency about being a gay man.”

When comparing monkeypox to HIV, Daskalakis said, “This one [monkeypox], you don’t have to change behaviors for generations; it’s for a few months. Once you build your force field of immunity with vaccines, people can make their own informed decisions about their risk.”

Opportunities for Clinical Laboratories

So, how should clinical laboratories respond if there’s another monkeypox flare up?

Daskalakis advocates for home testing. “People that are going to order home tests are going to be motivated to action in other ways. And so, thinking about HIV home testing, which was the grandparent of COVID-19 home testing, this really shows us how you reach people you’re not going to reach when you have lab-based, provider-only testing … When you look at the HIV home testing data from the CDC, 26% of the people that ordered a home test had never been tested before. That is way higher than what you would expect,” he told MedPage Today.

In “Healthcare Experts Say Consumers Are Ready for Self-Test Flu Kits, but Are Physicians and Clinical Laboratories Ready to Let That Cat Out of the Bag?Dark Daily explored similar opportunities for clinical laboratories to be instrumental in increasing consumers safety by helping patients accurately collect samples, administer tests, and understand test results.

We are not out of the woods in regard to monkeypox, vigilance is still required. But with existing harm reduction measures in the most vulnerable community, at-home testing and advancements in vaccines could help us keep our numbers as low as possible.

Ashley Croce

Related Information:

2022 (Mpox) Outbreak Cases and Data

About Mpox

Mpox Is Almost Gone in the US, Leaving Lessons and Mysteries In Its Wake

Mpox Is No Longer a Public Health Emergency in the US

2022-23 Mpox (Monkeypox) Outbreak: Global Trends

Where Did All the Monkeypox Go?

Healthcare Experts Say Consumers Are Ready for Self-Test Flu Kits, but Are Physicians and Clinical Laboratories Ready to Let That Cat Out of the Bag?

Healthcare Experts Say Consumers Are Ready for Self-Test Flu Kits, But Are Physicians and Clinical Laboratories Ready to Let That Cat Out of the Bag?     

Clinical laboratories could play a key role in helping users collect their samples correctly, interpret results, and transfer flu test data to their health records

Clinical laboratories may have another opportunity to provide service to their clients and the physicians who treat them. With the success of at-home COVID-19 testing, consumer demand for self-tests is changing and advances in diagnostic technology now make it feasible to make more influenza (flu) tests available for consumers to buy and use at home.

At-home tests for SARS-CoV-2 can be found at pharmacies all across America. But that’s not the case with tests for influenza.

Should self-test flu kits eventually become available and common, clinical laboratories could offer the service of helping consumers understand:

  • that the test was conducted correctly (specimen collection and analysis),
  • that the result is accurate and reproducible, and
  • how to understand the results.

Clinical laboratories also could collect and input the results into their laboratory information system (LIS), then send those results to the patients’ electronic health record (EHR) at their physician’s clinic.

Christina Yen, MD

“Home flu testing would ensure that those who do need and receive antiviral medication for influenza are the ones who need it the most,” and that “we are making our treatment decisions based on data,” infectious disease specialist Christina Yen, MD (above), University of Texas Southwestern Medical Center, told STAT News. At-home flu self-tests could also bring opportunities for clinical laboratories to provide service to healthcare consumers and the physicians who treat them. (Photo copyright: UT Southwestern Medical Center.)

Pros and Cons of Consumers Doing At-home Influenza Testing

According to the federal Centers for Disease Control and Prevention (CDC), COVID-19 and influenza are both upper respiratory illnesses with similar symptoms. So, why don’t we have more at-home flu tests available? Partly because at-home testing is a relatively new phenomenon in modern healthcare.

“It’s really rare, and it’s really new that people are allowed to know about what’s happening inside their body without a physician in the middle,” Harvard epidemiologist Michael Mina, MD, PhD, told STAT News. The article uses the example of at-home pregnancy tests. Despite a prototype for an at-home pregnancy test being created in 1967, it took another decade before an over-the-counter pregnancy test became available to the public.

“The general thinking was, ‘How could a woman possibly know what to do if she found out she was pregnant on her own without a doctor in the room?’ That is a ridiculous concern because women have been doing that for millions of years,” Mina added.

So, why be cautious when it comes to giving patients the option of at-home flu testing?

There are some cons to at-home influenza tests. Average citizens are not clinical laboratory professionals. They might obtain too little sample for an accurate reading or read the results incorrectly. Then, there is the possibility for false-negatives or false-positives.

An at-home test user is not likely to consider the possibility of a false result, however clinicians look at the situation with more nuance. If the patient was still symptomatic or in a high-risk community, the provider could administer a more sensitive medical laboratory test to confirm the previous test results.

There are other concerns about at-home testing as well. Another STAT News article titled, “Growing Use of Home COVID-19 Tests Leaves Health Agencies in the Dark about Unreported Cases,” reported on a superspreading event that health officials did not know about: a Phish concert on Halloween.

“In a Facebook post from mid-November with hundreds of responses, concertgoers compared symptoms and positive test results, many of those from tests taken at home. But those data weren’t added to state public health tallies of COVID’s spread,” STAT News noted.

The larger concern is that samples obtained by at-home self-test users are not submitted for genomic sequencing. This could lead to incomplete data and delay identifying new variants of the coronavirus in communities.

“If nobody’s reporting the tests, are we really getting the information we need?” Atul Grover, MD, PhD, Executive Director of the Association of American Medical Colleges Research and Action Institute, told STAT News. “We have no idea what the true positivity rate is.”

Another barrier to at-home flu testing is that rapid influenza diagnostic testing can be unreliable. In 2009, the rapid influenza tests could only detect the H1N1 influenza virus in a mere 11% of samples, STAT News reported. Because of this, the FDA now requires manufacturers to test their rapid tests against eight different strains that change every year depending upon which strains are prevalent. This could present a problem if individuals use leftover tests from the previous flu season.

Do Pros of At-home Testing Outweigh the Cons?

At-home testing is convenient and makes testing more accessible to patients who may not be able to get to a clinic. Being able to test at home also encourages individuals to take precautions necessary to stop the spread of whichever illness they may have. Given the similarities in symptoms between influenza and COVID-19, people could benefit from having tools at home that correctly identify their illness.

At-home COVID-19 tests are here to stay, and at-home influenza tests may be on the way soon. Clinical laboratories could play an important role in educating the public on the correct handling of these tests.

Ashley Croce

Related Information:

Why Doesn’t the U.S. Have At-Home Flu Tests?

What Is the Difference between Influenza (Flu) and COVID-19?

We Still Don’t Have At-Home Testing for the Flu—But COVID-19 Has Changed the Stakes

Growing Use of Home COVID-19 Tests Leaves Health Agencies in the Dark about Unreported Cases

Healthcare Experts See Links Between COVID-19 and RSV as Tripledemic Pressures Ease on Hospitals and Clinical Laboratories

Some medical experts suggest an ‘immunity gap’ related to COVID-19 mitigation measures, while others point to alternative theories

Surge in fall/winter SARS-CoV-2, influenza (flu), and respiratory syncytial virus (RSV) hospitalizations and ensuing clinical laboratory test referrals—dubbed by some public health experts as a “tripledemic”—appear to have eased in the US, according to stats from the US Centers for Disease Control and Prevention (CDC), Becker’s Hospital Review reported. However, scientists are still left with questions about why the RSV outbreak was so pronounced.

Some healthcare experts point to an “immunity gap” tied to the COVID-19 pandemic, while others suggest alternative theories such as temporary immunodeficiency brought on by COVID-19. In most cases, RSV causes “mild, cold-like symptoms,” but the CDC states it also can cause serious illness, especially for infants, young children, and older adults, leading to emergency room visits, hospitalizations, and an increased demand for clinical laboratory testing.

Pulmonology Advisor reported that the disease typically peaks between December and February, but hospitalizations this season hit their peak in November with numbers far higher than in previous years. In addition to infants and older adults, children between five and 17 years of age were “being hospitalized far in excess of their numbers in previous seasons,” the publication reported.

Asuncion Meijas MD, PhD

“Age by itself is a risk factor for more severe disease, meaning that the younger babies are usually the ones that are sick-sick,” pediatrician Asuncion Mejias, MD, PhD (above), a principal investigator with the Center for Vaccines and Immunity at Nationwide Children’s Hospital in Columbus, Ohio, told MarketWatch. Now, she added, “we are also seeing older kids, probably because they were not exposed to RSV the previous season.” Clinical laboratories in hospitals caught the brunt of those RSV inpatient admissions. (Photo copyright: Nationwide Children’s Hospital.)

Did COVID-19 Cause Immunity Gap and Surge in Respiratory Diseases?

CDC data shows that hospitalization rates linked to RSV have steadily declined since hitting their peak of 5.2 per 100,000 people in mid-November. In contrast, hospitalizations linked to the flu peaked in late November and early December at 8.7 per 100,000. Hospitalizations linked to COVID 19—which still exceed those of the other respiratory diseases—reached a plateau of 9.7 per 100,000 in early December, then saw an uptick later that month before declining in the early part of January, 2023, according to the CDC’s Respiratory Virus Hospitalization Surveillance Network (RESP-NET) dashboard.

Surveillance by the CDC’s National Center for Immunization and Respiratory Diseases (NCIRD) revealed a similar pattern: An early peak in weekly numbers for emergency room visits for RSV, followed by a spike for influenza and steadier numbers for COVID-19.

So, why was the RSV outbreak so severe?

Respiratory diseases tend to hit hardest in winter months when people are more likely to gather indoors. Beyond that, some experts have cited social distancing and masking requirements imposed in 2020 and 2021 to limit the spread of COVID 19. These measures, along with school closures, had the side effect of reducing exposure to influenza and RSV.

“It’s what’s being referred to as this ‘immunity gap’ that people have experienced from not having been exposed to our typical respiratory viruses for the last couple of years, combined with reintroduction to indoor gatherings, indoor venues, indoor school, and day care without any of the mitigation measures that we had in place for the last couple of years,” infectious disease expert Kristin Moffitt, MD, of Boston Children’s Hospital told NPR.

Term ‘Immunity Debt’ Sparks Controversy

Other experts have pushed back against the notion that pandemic-related public health measures are largely to blame for the RSV upsurge. Many have objected to the term “immunity debt,” a term Forbes reported on in November.

“Immunity debt is a made-up term that did not exist until last year,” pediatrician Dave Stukus, MD, wrote on Twitter. Stukus is a Professor of Clinical Pediatrics in the Division of Allergy and Immunology at Nationwide Children’s Hospital in Columbus, Ohio.

An article published by Texas Public Radio (TPR) suggests further grounds for skepticism, stating that “the immunity debt theory doesn’t seem to hold up to scrutiny.”

Pediatrician and infectious disease expert Theresa Barton, MD, of UT Health San Antonio noted that there was also a big RSV surge in summer of 2021.

“That was sort of the great unmasking, and everybody got viral illnesses,” she told TPR. “Now we’re past that. We’ve already been through that. We should have some immunity from that and we’re having it again.”

She added that “the hospital is filled with babies who are less than a year of age who have RSV infection. Those children weren’t locked down in 2020.”

The story also noted that not all Americans complied with social distancing or masking guidelines.

“We’re not seeing [less viral illness in] states in the United States that were less strict compared to states that were stricter during mask mandates and things like that. All the states are being impacted,” Barton told TPR.

Perfect Storm of Demand for Clinical Laboratory Testing

Barton suggested that COVID-19 might have compromised people’s immune systems in ways that made them more susceptible to other respiratory diseases. For example, a study published in Nature Immunology, titled, “Immunological Dysfunction Persists for Eight Months following Initial Mild-to-Moderate SARS-CoV-2 Infection,” found that some patients who survived COVID-19 infection developed post-acute long COVID (LC, aka, COVID syndrome) which lasted longer than 12 weeks. And that “patients with LC had highly activated innate immune cells, lacked naive T and naive B cells, and showed elevated expression of type I IFN (IFN-β) and type III IFN (IFN-λ1) that remained persistently high at eight months after infection.”  

Experts speaking to The Boston Globe said that multiple factors are likely to blame for the severity and early arrival of the RSV outbreak. Pediatric hospitalist and infectious disease specialist Chadi El Saleeby, MD, of Massachusetts General Hospital, said the severity of some cases might be tied to simultaneous infection with multiple viruses.

Clinical laboratories experienced a perfect storm of infectious disease testing demands during this tripledemic. Hopefully, with the arrival of spring and summer, that demand for lab tests will wane and allow for a return to a normal rate of traditional laboratory testing.

Stephen Beale

Related Information:

This Year’s RSV Surge: Bigger, Earlier, and Affecting Older Patients than Previous Seasonal Outbreaks

Experts Explain the ‘Perfect Storm’ of Rampant RSV and Flu

Flu, COVID-19 and RSV are All Trending Down for the First Time in Months

COVID, Flu, RSV Declining in Hospitals As ‘Tripledemic’ Threat Fades

COVID-19 May Be to Blame for the Surge in RSV Illness Among Children. Here’s Why.

Is Immunity Debt or Immunity Theft to Blame for Children’s Respiratory Virus Spike?

Don’t Blame ‘Immunity Debt’ If You Get Sick This Winter

Claims of an Immunity Debt in Children Owe Us Evidence

Some are Blaming ‘Immunity Debt’ for the ‘Tripledemic’—But Experts Disagree

Rapid Tests for COVID, RSV and the Flu are Available in Europe. Why Not in the US?

;