News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

CDC Ranks Two More Drug-Resistant Microbes as ‘Urgent Threat’ to Americans; Clinical Laboratories Are Advised to Increase Awareness of Antimicrobial Resistance

In a separate study, HHS finds a 40% increase in sepsis cases, as more patients succumb to infections without effective antibiotics and antimicrobial drugs

Given the drastic steps being taken to slow the spread of the Coronavirus in America, it’s easy to forget that significant numbers of patients die each year due to antibiotic-resistant bacteria (ARB), other forms of antimicrobial resistance (AMR), and in thousands of cases the sepsis that follows the infections.

This is why the Centers for Disease Control and Prevention (CDC) issued the report “Antibiotic Resistance Threats in the United States, 2019 (2019 AR Threats Report)” last fall. The federal agency wants to call attention the emergence of new antibiotic-resistant bacteria and fungi. In its report, the CDC lists 18 bacteria and fungi that pose either urgent, serious, or concerning threats to humans. It also placed one fungus and two bacteria on a “watch” list.

The CDC’s website states that “more than 2.8 million antibiotic-resistant infections occur in the US each year, and more than 35,000 people die as a result.” And a CDC news release states, “on average, someone in the United States gets an antibiotic-resistant infection every 11 seconds and every 15 minutes someone dies.”

Those are huge numbers.

Clinical laboratory leaders and microbiologists have learned to be vigilant as it relates to dangerously infectious antimicrobial-resistant agents that can result in severe patient harm and death. Therefore, new threats identified in the CDC’s Antibiotic Resistance Threats in the United States report will be of interest.

Drug-resistant Microbes That Pose Severe Risk

The CDC has added the fungus Candida auris (C. auris) and carbapenem-resistant Acinetobacter (a bacteria that can survive for a long time on surfaces) to its list of “urgent threats” to public health, CDC said in the news release. These drug-resistant microbes are among 18 bacteria and fungi posing a greater threat to patients’ health than CDC previously estimated, Live Science reported.

In 2013, the CDC estimated that about two million people each year acquired an antibiotic-resistant (AR) infection that killed as many as 23,000. However, in 2019, the CDC reported that those numbers were low and that the number of deaths due to AR infections in 2013 was about twice that amount. During a news conference following the CDC announcement, Michael Craig (above), a Senior Adviser for the CDC’s Antibiotic Resistance Coordination and Strategy Unit said, “We knew and said [in 2013] that our estimate was conservative … and we were right,” Live Science reported. In 2019, CDC reported 2.8 million antibiotic-resistant infections annually with more than 35,000 related deaths in the US alone. (Photo copyright: Centers for Disease Control and Prevention.)

The CDC considers five threats to be urgent. Including the latest additions, they are:

Dark Daily has regularly covered the healthcare industry’s ongoing struggle with deadly fungus and bacteria that are responsible for hospital-acquired infections (HAI) and sepsis. This latest CDC report suggests healthcare providers continue to struggle with antimicrobial-resistant agents.

Acinetobacter Threat Increases and C. auris a New Threat since 2013

Carbapenem-resistant Acinetobacter, a bacterium that causes pneumonia and bloodstream and urinary tract infections, escalated from serious to urgent in 2013. About 8,500 infections and 700 deaths were noted by the CDC in 2017. 

C. auris, however, was not addressed in the 2013 report at all. “It’s a pathogen that we didn’t even know about when we wrote our last report in 2013, and since then it’s circumvented the globe,” said Michael Craig, Senior Adviser for the CDC’s Antibiotic Resistance Coordination and Strategy Unit, during a news conference following the CDC announcement, Live Science reported.

Today, C. auris is better understood. The fungus resists emerging drugs, can result in severe infections, and can be transmitted between patients, CDC noted.

Last year, Dark Daily reported on C. auris, noting that as of May 31 the CDC had tracked 685 cases. (See, “Potentially Fatal Fungus Invades Hospitals and Public Is Not Informed,” August 26, 2019.)

By year-end, CDC tracking showed 988 cases in the US.

More Patients Getting Sepsis as Antibiotics Fail: HHS Study

In a separate study published in Critical Care Medicine, a journal of the Society of Critical Care Medicine (SCCM), the US Department of Health and Human Services  (HHS) found that antibiotic-resistant bacteria and fungi are resulting in more people acquiring sepsis, a life-threatening condition, according to an HHS news release.

Sepsis increased by 40% among hospitalized Medicare patients from 2012 through 2018, HHS reported.   

“These (untreatable infections) are happening here and now in the United States in large numbers. This is isn’t some developing world thing. This isn’t a threat for 2050. It’s a threat for here and now,” Cornelius “Neil” Clancy, MD, Associate Chief of Veterans Affairs Pittsburg Health System (VAPHS) and Opportunistic Pathogens, told STAT.

It is troubling to see data about so many patient deaths related to antibiotic-resistant infections and sepsis cases when the world is transfixed by the Coronavirus. Nevertheless, it’s important that medical laboratory leaders and microbiologists keep track of how the US healthcare system is or is not responding to these new infectious agents. And, to contact infection control and environmental services colleagues to enhance surveillance, ensure safe healthcare environments and equipment, and adopt appropriate strategies to prevent antibiotic-resistant infections.   

—Donna Marie Pocius

Related Information:

CDC:  Biggest Threats and Data: 2019 Antibiotic Resistance Threats in the United States

More People in the U.S. Dying from Antibiotic-Resistant Infections Than Previously Estimated; Significant Progress Since 2013 Could be Lost Without More Action

These Two Drug-Resistant Microbes Are New “Urgent Threats” to Americans’ Health

CDC Report: 35,000 Americans Die of Antibiotic-Resistant Infections Each Year

The Superbug Candida Auris is Giving Rise to Warnings and Big Questions

On the Emergency of Candida Auris Climate Change, Azoles, Swamps, and Birds

Largest Study of Sepsis Cases Among Medicare Beneficiaries Finds Significant Burden

Sepsis Among Medicare Beneficiaries: The Burdens of Sepsis 2012 to 2018

Dark Daily: Hospital-Acquired Infection

Potentially Fatal Fungus Invades Hospitals and Public is Not Informed

Wellcome Sanger Institute Study Discovers New Strain of C. Difficile That Targets Sugar in Hospital Foods and Resists Standard Disinfectants

Researchers believe new findings about genetic changes in C. difficile are a sign that it is becoming more difficult to eradicate

Hospital infection control teams, microbiologists, and clinical laboratory professionals soon may be battling a strain of Clostridium difficile (C. difficile) that is even more resistant to disinfectants and other forms of infection control.

That’s the opinion of research scientists at the Wellcome Sanger Institute (WSI) and the London School of Hygiene and Tropical Medicine (LSHTM) in the United Kingdom who discovered the “genetic changes” in C. difficile. Their genomics study, published in Nature Genetics, shows that the battle against super-bugs could be heating up.

A WSI news release states the researchers “identified genetic changes in the newly-emerging species that allow it to thrive on the Western sugar-rich diet, evade common hospital disinfectants, and spread easily.”

Microbiologists and infectious disease doctors know full well that this means the battle to control HAIs is far from won.

C. difficile is currently forming a new species with one group specialized to spread in hospital environments. This emerging species has existed for thousands of years, but this is the first time anyone has studied C. difficile genomics in this way to identify it. This particular [bacterium] was primed to take advantage of modern healthcare practices and human diets,” said Nitin Kumar, PhD (above), in the news release. (Photo copyright: Wellcome Sanger Institute.) 

Genomic Study Finds New Species of Bacteria Thrive in Western Hospitals

In the published paper, Nitin Kumar, PhD, Senior Bioinformatician at the Wellcome Sanger Institute and Joint First Author of the study, described a need to better understand the formation of the new bacterial species. To do so, the researchers first collected and cultured 906 strains of C. difficile from humans, animals, and the environment. Next, they sequenced each DNA strain. Then, they compared and analyzed all genomes.

The researchers found that “about 70% of the strain collected specifically from hospital patients shared many notable characteristics,” the New York Post (NYPost) reported.

Hospital medical laboratory leaders will be intrigued by the researchers’ conclusion that C. difficile is dividing into two separate species. The new type—dubbed C. difficile clade A—seems to be targeting sugar-laden foods common in Western diets and easily spreads in hospital environments, the study notes. 

“It’s not uncommon for bacteria to evolve, but this time we actually see what factors are responsible for the evolution,” Kumar told Live Science.

New C. Difficile Loves Sugar, Spreads

Researchers found changes in the DNA and ability of the C. difficile clade A to metabolize simple sugars. Common hospital fare, such as “the pudding cups and instant mashed potatoes that define hospital dining are prime targets for these strains”, the NYPost explained.

Indeed, C. difficile clade A does have a sweet tooth. It was associated with infection in mice that were put on a sugary “Western” diet, according to the Daily Mail, which reported the researchers found that “tougher” spores enabled the bacteria to fight disinfectants and were, therefore, likely to spread in healthcare environments and among patients.

“The new C. difficile produces spores that are more resistant and have increased sporulation and host colonization capacity when glucose or fructose is available for metabolism. Thus, we report the formation of an emerging C. difficile species, selected for metabolizing simple dietary sugars and producing high levels or resistant spores, that is adapted for healthcare-mediated transmission,” the researchers wrote in Nature Genetics.

Bacteria Pose Risk to Patients

The findings about the new strains of C. difficile bacteria now taking hold in provider settings are important because hospitalized patients are among those likely to develop life-threatening diarrhea due to infection. In particular, people being treated with antibiotics are vulnerable to hospital-acquired infections, because the drugs eliminate normal gut bacteria that control the spread of C. difficile bacteria, the researchers explained.

According to the Centers for Disease Control and Prevention (CDC), C. difficile causes about a half-million infections in patients annually and 15,000 of those infections lead to deaths in the US each year.

New Hospital Foods and Disinfectants Needed

The WSI/LSHTM study suggests hospital representatives should serve low-sugar diets to patients and purchase stronger disinfectants. 

“We show that strains of C. difficile bacteria have continued to evolve in response to modern diets and healthcare systems and reveal that focusing on diet and looking for new disinfectants could help in the fight against this bacteria,” said Trevor Lawley, PhD, Senior Author and Group Leader of the Lawley Lab at the Wellcome Sanger Institute, in the news release.

Microbiologists, infectious disease physicians, and their associates in nutrition and environmental services can help by understanding and watching development of the new C. difficile species and offering possible therapies and approaches toward prevention.

Meanwhile, clinical laboratories and microbiology labs will want to keep up with research into these new forms of C. difficile, so that they can identify the strains of this bacteria that are more resistant to disinfectants and other infection control methods.  

—Donna Marie Pocius

Related Information:

Adaptation of Host Transmission Cycle During Clostridium Difficile Speciation

Diarrhea-causing Bacteria Adapted to Spread in Hospitals

Sugary Western Diets Fuel Newly Evolving Superbug

New Carb-Loving Superbug is Primed to Target Hospital Food

Superbug C Difficile Evolving to Spread in Hospitals and Feeds on the Sugar-Rich Western Diet

CDC: Healthcare-Associated Infections-C. Difficile  

Leapfrog Group Report Shows Hospitals Failing to Eliminate Hospital-Acquired Infections; Medical Laboratories Can Help Providers’ Antimicrobial Stewardship Programs

Contrary to CMS and Joint Commission programs implemented in 2017 to reduce them, incidents of hospital-acquired infections have risen for the past few years

Clinical laboratories and anatomic pathologists know that hospital-acquired infections (HAIs) can be deadly, not just for patients, but for their caregivers and families as well. Even one HAI is too many. Thus, the federal Centers for Medicare and Medicaid Services (CMS) required healthcare organizations to upgrade their antimicrobial stewardship (AMS) programs to meet CMS requirements and Joint Commission accreditation starting in 2017.

Nevertheless, a recent Leapfrog Group report indicates hospitals are finding it increasingly difficult to remove infections all together. This has many healthcare leaders concerned.

The report, which was analyzed by Castlight Health, states that the number of hospitals reporting zero infections has declined significantly since 2015, according to a news release. According to the Leapfrog Group’s report:

  • Two million people acquire HAIs every year;
  • 90,000 people die annually from HAIs;
  • HAI costs range from $1,000 to $50,000 depending on the infection.

Hospitals spend $28 to $45 billion annually on HAI costs, Healthcare Finance reported.

“I think it’s far too easy to let something slip, so it’s clear that there really needs to be a renewed focus on getting back to zero. We do still see some hospitals that are getting to zero, so it’s clearly possible,” Erica Mobley (above), Leapfrog Group’s Director of Operations, told Fierce Healthcare. (Photo copyright: LinkedIn.)

Regressing Instead of Progressing Toward Total HAI Elimination

Leapfrog Group’s report is based on 2017 hospital survey data submitted by 2,000 providers. The data indicates that in just two years the number of hospitals reporting zero HAIs dropped by up to 50%. The reported HAIs include:

The remaining infection measures studied by Leapfrog Group had less dramatic decreases over the same time period, according to Fierce Healthcare. Nevertheless, they are significant. They include:

  • Surgical site infections (SSI) following colon surgery: 19% zero infections compared to 23% previously;
  • Clostridium difficile (C. difficile) inpatient infections: 3% zero inpatient infections in 2017, compared to 5% in 2015.

Joint Commission Studies Antimicrobial Program Progress

Meanwhile, the Joint Commission acknowledged that implementation of antimicrobial stewardship programs by providers can be difficult. In “The Expanding Role of Antimicrobial Stewardship Programs in Hospitals in the United States: Lessons Learned from a Multisite Qualitative Study,” the accrediting organization released insights from interviews with 12 antimicrobial stewardship program leaders nationwide.

They published their study in “The Joint Commission Journal on Quality and Patient Safety.” Three themes emerged from the interviews:

  • Hospitals have revised their antimicrobial programs, which originally operated on a “top-down” structure, to programs that include clinicians from throughout entire provider organizations;
  • Health information technology (HIT) can enable real-time opportunities to launch antimicrobial therapy and treat patients; and,
  • Some barriers exist in getting resources to integrate technology and analyze data.

“These programs used expansion of personnel to amplify the antimicrobial stewardship programs’ impact and integrated IT resources into daily workflow to improve efficiency,” the researchers wrote. “Hospital antimicrobial stewardship programs can reduce inappropriate antimicrobial use, length of stay, C. difficile infection, rates of resistant infections, and cost.”

What Do CMS and Joint Commission Expect?

According to Contagion, while the Joint Commission program is part of medication management, CMS places its requirements for the antimicrobial stewardship program under “infection prevention.”

CMS requirements for an antimicrobial stewardship program include:

  • Developing antimicrobial stewardship program policies and procedures;
  • Implementing hospital-wide efforts;
  • Involving antimicrobial stakeholders for focus on antimicrobial use and bacterial resistance;
  • Setting evidence-based antimicrobial use goals; and,
  • Reducing effects of antimicrobial use in areas of C. difficile infections and antibiotic resistance.

Leapfrog Group’s data about fewer hospitals reporting zero infections offers opportunities for hospital laboratory microbiology professionals to get involved with hospital-wide antimicrobial program teams and processes and help their hospitals progress back to zero HAIs. Clinical laboratories, both hospital-based and independent, also have opportunities to contribute to improving the antimicrobial stewardship efforts of the physicians who refer them specimens.

—Donna Marie Pocius

Related Information:

Troubling New Report on Hospital Infections Comes While Centers Medicare and Medicaid Services Considers Discontinuing Publicly Reporting Rates

Leapfrog Group: Healthcare-Associated Infections

Antimicrobial Stewardship Standards: A Comparison of Centers for Medicare and Medicaid Services and Joint Commission Requirements

Joint Commission: New Antimicrobial Stewardship Standard

Core Elements of Hospital Antibiotic Stewardship Programs

Number of Hospitals Achieving Zero Infections Drops

Hospitals Losing Ground on Effectively Preventing Infections with Dramatic Drop in Those Reporting Zero Infections

The Expanding Role of Antimicrobial Stewardship Programs in Hospitals in the United States: Lessons Learned from a Multi-Site Qualitative Study

;