News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

GlaxoSmithKline to Use a ‘Breath Biopsy’ Test by Owlstone Medical in a Phase II Clinical Trial of a Respiratory Drug

It has been regularly demonstrated in recent decades that human breath contains elements that could be incorporated into clinical laboratory tests, so the decision to use this “breath biopsy” test in a therapeutic drug trial will be closely watched

When a major pharma company pays attention to a breath test, implications for clinical laboratories are often forthcoming. Such may be the case with GlaxoSmithKline (GSK). The global healthcare company has selected Owlstone Medical’s Breath Biopsy technology for use in its Phase II clinical trial of danirixin (DNX), a respiratory drug under development by GSK for treatment of chronic obstructive pulmonary disease (COPD), an Owlstone Medical news release announced.

Anatomic pathologists and medical laboratory leaders will be intrigued by GSK’s integration of breath-based specimens in a clinical trial of a respiratory drug. The partners in the trial aim to analyze breath samples to better understand the drug’s treatment effects and to discover personalized medicine (AKA, precision medicine) opportunities.

GSK (NYSE:GSK), headquartered in the UK but with a large presence in the US, researches and develops pharmaceutical medicines, vaccines, and other consumer health products.

Owlstone Medical, a diagnostic company, is developing a breathalyzer for disease and says it is on a mission to save 100,000 lives and $1.5 billion in healthcare costs. Dark Daily previously reported on Owlstone Medical’s Breath Biopsy platform. The Cambridge, England-based company has raised significant funding ($23.5 million) and already garnered credible cancer trial collaborators including the UK’s National Health Service (NHS).

Now, Owlstone Medical has brought its breath analysis technology to bear on chronic disease outside of cancer diagnostics development. A pharmaporum article called Owlstone’s Medical’s work with GSK an “additional boost of confidence” in the company’s technology, as well as a means for revenue.

Billy Boyle, co-founder and Chief Executive Officer, Owlstone Medical (above), shown with the company’s ReCIVA Breath Sampler device. This will be used by GSK in its Phase II respiratory disease clinical trial of danirixin to “capture VOC biomarkers in breath samples.” (Photo copyright: Business Weekly UK.)

GSK Studying Future Treatments for Respiratory Diseases

COPD affects about 700 million people worldwide, an increase of about 65% since 1990, GSK pointed out. In September 2017, GSK presented respiratory disease data and its pipeline medications at the European Respiratory Society in Milan, Italy. Included was information on danirixin (an oral CXCR2 antagonist), which is part of the company’s focus on COPD disease modification, according to a GSK news release.

“Each of our studies sets the bar for our future research and innovation,” noted Neil Barnes, MA Cantab, FRCP, FCCP(Hon), Vice President, Global Franchise Medical Head, GSK Respiratory, in the GSK press release.

Clinical Trial Aimed at Identifying the ‘Right’ Patients

With Owlstone Medical’s breathalyzer, GSK plans to explore how volatile organic compounds (VOCs) can help identify patients who will benefit most from the company’s medications, as well as evaluate Danirixin’s effects. A critical element of personalized medicine.

“It’s part of our efforts to identify the right patient for the right treatment,” said Ruth Tal-Singer, PhD, GSK’s Vice President of Medicine Development Leader and Senior Fellow, Respiratory Research and Development, in the Owlstone Medical news release.

VOCs in breath will be captured in a non-invasive way from patients who wear Owlstone Medical’s ReCIVA Breath Sampler, which, according to Owlstone Medical, has CE-mark clearance, a certification noting conformity with European health and safety standards. The VOCs breath samples will then be sent to Owlstone Medical’s lab for high-sensitivity analysis.

“Non-invasive Breath Biopsy can establish a role in precision medicine applications such as patient stratification and monitoring treatment response,” said Billy Boyle, Owlstone Medical’s co-Founder and Chief Executive Officer.

 VOC Biomarkers in Respiratory Disease

VOC profiles can be characteristic of COPD as well as other respiratory diseases including asthma, tuberculosis, and cystic fibrosis, reported Science/Business.

According to Owlstone Medical’s Website, VOCs are gaseous molecules produced by the human body’s metabolism that are suitable for Breath Biopsy. Their research suggests that exhaled breath reflects molecular processes responsible for chronic inflammation. Thus, VOCs captured through Breath Biopsy offer insight into respiratory disease biomarkers.

Breath also includes VOCs that originate from circulation, which can provide information on a patient’s response to medications.

How the Breath Biopsy Platform Works

Owlstone Medical’s platform relies on its patented Field Asymmetric Ion Mobility Spectrometry (FAIMS) technology, which “has the ability to rapidly monitor a broad range of VOC biomarkers from breath, urine and other bodily fluids with high sensitivity and selectivity,” according to the company’s website. During the process:

  • Gases are exchanged between circulating blood and inhaled fresh air in the lungs;
  • VOC biomarkers pass from the circulation system into the lungs along with oxygen, carbon dioxide, and other gases;
  • Exhaled breath contains exiting biomarkers.

It takes about a minute for blood to flow around the body. So, a breath sample during that time makes possible collection and analysis of VOC biomarkers from any part of the body touched by the circulatory system.

The medical analysis is enabled by software in the Owlstone Medical lab, Boyle told the Cambridge Independent.

“There’s an analogy with blood prints—you get the blood and can look for different diseases, and we’ve developed core hardware and technology to analyze the breath sample,” he said.

Another Breath Sample Device 

The ReCIVA Breath Sampler is not the only breathalyzer focused on multiple diseases.  Dark Daily reported on research conducted by Technion, Israel’s Institute of Technology, into a breath analyzer that can detect up to 17 cancers, and inflammatory and neurological diseases.

But Owlstone Medical stands out due, in part, to its noteworthy partners: the UK’s National Health Service, as well as the:

And now the company can add collaboration with GSK to its progress. Though some question the reliability of breath tests as biomarkers in the areas of sensitivity and specificity required for cancer diagnosis, Owlstone Medical appears to have the wherewithal to handle those hurdles. It is a diagnostics company that many pathologists and medical laboratory professionals may find worth watching.

—Donna Marie Pocius

Related Information:

Owlstone Medical’s Breath Biopsy Platform Integrated into GSK’s Phase II Respiratory Disease Clinical Trial

GSK Utilizes Owlstone Disease Breathalyser for Key Clinical Trials

GSK Presents Respiratory Data from Pipeline to Clinical Practice at ERS

GSK Boosts Medtech First Owlstone with Use of Breath Biopsy in Respiratory Trial

Glaxo to Stratify COPD Trial Using Breath Biopsy Device

Billy Boyle of Owlstone Medical on the Inspiration Behind His Mission to Save 100,000 From Dying of Cancer

Owlstone Medical and UK’s NHS Study Whether Breath Contains Useful Biomarkers

Breath Based Biomarker Detection: Informing Drug Development and Future Treatment Regimes

Clinical Laboratories Could Soon Diagnose 17 Diseases with a Single Breath Analyzer Test from Israel’s Institute of Technology

Wearable Tattoo Can Monitor Blood Alcohol Levels with Diagnostic Technologies Familiar to Clinical Laboratory Scientists

The minute electronic device accurately determines alcohol blood levels by sampling the wearer’s sweat

During a night out on the town, what better way for individuals to monitor their consumption of alcohol and blood alcohol levels than by wearing a tattoo that can monitor blood alcohol levels? That’s the vision of researchers at the University of California, San Diego (UCSD).

This temporary tattoo would be capable of helping an individual determine, “Am I drunk or just slightly buzzed. Am I becoming a public nuisance? Am I able to drive right now?” An innovative, cutting-edge device is being designed to help consumers definitively answer those questions.

Clinical chemists, medical laboratory scientists, and pathologists will be interested in the diagnostic technologies used to accomplish this testing. The device is basically a malleable, temporary tattoo that adheres to the skin and induces sweat. It is equipped with a flexible electronic circuit board and a hydrogel patch that contains pilocarpine, a sweat-inducing drug. The electrodes in the device collect a sample to determine blood alcohol content. That data is then wirelessly transmitted to a mobile device, such as a laptop or a smartphone, and provides an accurate reading of whether or not a person is inebriated. (more…)

Wisconsin Company Developing Breath-based Diagnostic Test Technology that Can Detect Early-Stage Infections within Two Hours of Onset

Hospital-based pathologists may soon gain a new diagnostic assay that could prove effective in detecting hospital-acquired infections more quickly and more accurately than with existing rapid molecular diagnostic tests

Imagine a diagnostic assay designed for hospital settings that uses a specimen of the patient’s breath, can be performed at the bedside, and can detect early-stage infections within two hours of onset. Pathologists and clinical laboratory managers will recognize that a diagnostic test such as this could play a big role in helping hospitals reduce hospital-acquired infections (HAI).

That’s just one application that Madison, Wisconsin-based Isomark has for the new breath analyzer test it is developing. The company says that its diagnostic test is capable of detecting early metabolism and immune system changes based on reading carbon dioxide (CO2) in a patient’s breath.

Canary Could Affect Volume of Clinical Laboratory Specimens

The Isomark Canary Breath Analyzer test (Canary) was specifically designed to identify infections before they have a chance to overwhelm the patient’s immune system. Canary has so many potential uses for identifying infection early that, if the technology were cleared for clinical use, medical laboratories could eventually see a significant reduction in the volume of patient specimens coming into the microbiology department. (more…)

Companies Developing Non-invasive and Wearable Glucose Monitoring Devices That Can Report Test Data in Real Time to Physicians and Clinical Laboratories

Goal is to shift glucose testing away from medical laboratories and make it easier for diabetics to do their own testing, while capturing glucose test results in patient records

Because of the tremendous volume of glucose tests performed daily throughout the world, many companies are developing non-invasive methods for glucose testing. Their goal is a patient-friendly technology that does not require a needle stick or venipuncture and may even eliminate the need to send specimens to a medical laboratory.

What is intriguing about these initiatives is that, in their final form, they may create a flow of useful diagnostic data reported to clinical laboratories in real time. This would create the opportunity for pathologists and lab scientists to consult with the patients’ physicians, while archiving this test result data in the laboratory information system (LIS).

These glucose monitoring methods would also ensure that a complete longitudinal record of patient tests results is available to all the physicians practicing in an accountable care organization (ACO), medical home, or hospital.  (more…)

Researchers Want to Introduce Breath Analysis into Clinical Pathology Laboratory Testing

Recent advances in breath analyzer technologies may give pathologists new diagnostic tools

Does breath analysis have a promising future in pathology and clinical laboratory testing? That day may not be far off. Scientists in multiple research laboratories are developing cost-effective, non-invasive diagnostic test technologies based on breath specimens from patients.

Researchers say that breath analysis can provide critical information in real time and deliver numerous advantages over fluid and image-based testing. In fact, glucose testing via breath specimen may be just around the corner!

On May 31, 2011, Xhale, Inc. was issued a patent for its system and method for non-invasive monitoring of glucose concentrations in blood to provide critical information in the diagnosis and treatment of diabetes. The Xhale system consists of a small handheld device that analyzes exhaled breath condensate. (more…)

;