Nearly 100,000 patients submitted saliva samples to a genetic testing laboratory, providing insights into their disease risk
Researchers at Mayo Clinic have employed next-generation sequencing technology to produce a massive collection of exome data from more than 100,000 patients, offering a detailed look at genetic variants that predispose people to certain diseases. The study, known as Tapestry, was administered by doctors and scientists from the clinic’s Center for Individualized Medicine and produced the “largest-ever collection of exome data, which include genes that code for proteins—key to understanding health and disease,” according to a Mayo Clinic news release.
For our clinical laboratory professionals, this shows the keen interest that a substantial portion of the population has in using their personal genetic data to help physicians identify their risk for many diseases and types of cancer. This support by healthcare consumers is a sign that labs should be devoting attention and resources to providing these types of gene sequencing services.
As Mayo explained in the news release, the exome includes nearly 20,000 genes that code for proteins. The researchers used the dataset to analyze genes associated with higher risk of heart disease and stroke along with several types of cancer. They noted that the data, which is now available to other researchers, will likely provide insights into other diseases as well, the news release notes.
“What we’ve accomplished with the Tapestry study is a blueprint for future endeavors in medical science,” said gastroenterologist and lead researcher Konstantinos Lazaridis, MD (above), in the news story. “It demonstrates that through innovation, determination and collaboration, we can deeply advance our understanding of DNA function and eventually other bio-molecules like RNA, proteins and metabolites, turning them into novel diagnostic tools to improve health, prevent illness, and even treat disease.” Some of these newly identified genetic markers may be incorporated into new clinical laboratory assays. (Photo copyright: Mayo Clinic.)
How Mayo Conducted the Tapestry Study
One notable aspect of the study was its methodology. The study launched in July 2020 during the COVID-19 pandemic. Since many patients were quarantined, researchers conducted the study remotely, without the need for the patients to visit a Mayo facility. It ran for five years through May 31, 2024. The news release notes that it’s the largest decentralized clinical trial ever conducted by the Mayo Clinic.
The researchers identified 1.3 million patients from the main Mayo Clinic campuses in Minnesota, Arizona, and Florida who met the following eligibility criteria:
Participants had to be 18 or older,
they had to have internet and email access, and
be sufficiently proficient in speaking and reading English.
More than 114,000 patients consented to participate, but some later withdrew, resulting in a final sample of 98,222 individuals. Approximately two-thirds were women. Mean age was 57 (61.9 for men and 54.3 for women).
“It was a tremendous effort,” said Mayo Clinic gastroenterologist and lead researcher Konstantinos Lazaridis, MD, in the news release. “The engagement of such a number of participants in a relatively short time and during a pandemic showcased the trust and the dedication not only of our team but also of our patients.”
He added that the researchers “learned valuable lessons about some patients’ decisions not to participate in Tapestry, which will be the focus of future publications.”
Three Specific Genes
Enrolled patients were invited to visit a website, where they could view a video and submit an eligibility form. Once approved, they completed a digital consent agreement and received a saliva collection kit. Participants were also invited to provide information about their family history.
Helix, a clinical laboratory company headquartered in San Mateo, Calif., performed the exome sequencing.
Though Helix performed whole exome sequencing, the researchers were most interested in three specific sets of genes:
Patients received clinical results directly from Helix along with information about their ancestry. Clinical results were also transmitted to Mayo Clinic for inclusion in patients’ electronic health records (EHRs).
Among the participants, approximately 1,800 (1.9%) had what the researchers described as “actionable pathogenic or likely pathogenic variants.” About half of these were BRCA1/2.
These patients were invited to speak with a genetic counselor and encouraged to undergo additional testing to confirm the variants.
Tapestry Genomic Registry
In addition to the impact on the participants, Mayo Clinic’s now has an enormous amount of raw sequencing data stored in the Tapestry Genomic Registry, where it will be available for future research.
The database “has become a valuable resource for Mayo’s scientific community, with 118 research requests submitted,” the researchers wrote in the news release. Mayo has distribution more than a million exome datasets to other genetic researchers.
“What we’ve accomplished with the Tapestry study is a blueprint for future endeavors in medical science,” Lazaridis noted. “It demonstrates that through innovation, determination, and collaboration, we can deeply advance our understanding of DNA function and eventually other bio-molecules like RNA, proteins and metabolites, turning them into novel diagnostic tools to improve health, prevent illness, and even treat disease.”
Everything about this project is consistent with precision medicine, and the number of individuals discovered to have risk of cancers is relevant. Clinical laboratory professionals understand these ratios and the importance of early detection and early intervention.
Study findings could lead to new clinical laboratory screening tests that determine risk for cancer
New disease biomarkers generally lead to new clinical laboratory tests. Such may be the case in an investigational study conducted at the University of Oxford in the United Kingdom (UK). Researchers in the university’s Cancer Epidemiology Unit (CEU) have discovered certain proteins that appear to indicate the presence of cancer years before the disease is diagnosed.
The Oxford scientists “investigated associations between 1,463 plasma proteins and 19 cancers, using observational and genetic approaches in participants of the UK Biobank. They found 618 protein-cancer associations and 317 cancer biomarkers, which included 107 cases detected over seven years before the diagnosis of cancer,” News Medical reported.
To conduct their study, the scientists turned to “new multiplex proteomics techniques” that “allow for simultaneous assessment of proteins at a high-scale, especially those that remain unexplored in the cancer risk context,” News Medical added.
Many of these proteins were in “blood samples of people who developed cancer more than seven years before they received a diagnosis,” an Oxford Population Health news release notes.
“To be able to prevent cancer, we need to understand the factors driving the earliest stages of its development. These studies are important because they provide many new clues about the causes and biology of multiple cancers, including insights into what’s happening years before a cancer is diagnosed,” said Ruth Travis, BA, MSc, DPhil, senior molecular epidemiologist at Oxford Population Health and senior study author, in the news release.
“We now have technology that can look at thousands of proteins across thousands of cancer cases, identifying which proteins have a role in the development of specific cancers and which may have effects that are common to multiple cancer types,” said Ruth Travis, BA, MSc, DPhil (above), senior molecular epidemiologist, Oxford Population Health, in a news release. The study findings could lead to new clinical laboratory screening tests for cancer. (Photo copyright: University of Oxford.)
Proteomics to Address Multiple Cancers Analysis
In their published paper, the Oxford scientists acknowledged other research that identified links between blood proteins and risk for various cancers, including breast, colorectal, and prostate cancers. They saw an opportunity to use multiplex proteomics methods for the simultaneous measurement of proteins “many of which have not previously been assessed for their associations with risk across multiple cancer sites,” the researchers noted.
The researchers described “an integrated multi-omics approach” and the use of the Olink Proximity Extension Assay (PEA) to quantify 1,463 proteins in blood samples from 44,645 participants in the UK Biobank, a large biomedical database and resource to scientists.
Olink, a part of Thermo Fisher Scientific in Waltham, Mass., explains on its website that PEA technology “uniquely combines specificity and scalability to enable high-throughput, multiplex protein biomarker analysis.”
The researchers also compared proteins of people “who did and did not go on to be diagnosed with cancer” to determine differences and identify proteins that suggest cancer risk, News Medical reported.
Proteins Could Assist in Cancer Prevention
“To save more lives from cancer, we need to better understand what happens at the earliest stages of the disease. Data from thousands of people with cancer has revealed really exciting insights into how the proteins in our blood can affect our risk of cancer. Now we need to study these proteins in depth to see which ones could be reliably used for cancer prevention,” Keren Papier, PhD, senior nutritional epidemiologist at Oxford Population Health and joint lead author of the study, told News Medical.
While further studies and regulatory clearance are needed before the Oxford researchers’ approach to identifying cancer in its early stages can be used in patient care, their study highlights scientists’ growing interest in finding biomarker combinations that can predict or diagnose cancer even when it is presymptomatic. By focusing on proteins rather than DNA and RNA, researchers are turning to a source of information other than human genes.
For anatomic pathologists and clinical laboratory leaders, the Oxford study demonstrates how scientific teams are rapidly developing new knowledge about human biology and proteins that are likely to benefit patient care and diagnostics.
List also includes precision oncology, liquid biopsies, and early diagnosis of pancreatic cancer
Pathologists and clinical laboratory managers will be interested to learn that in a recently updated article the World Economic Forum (WEF) identified a dozen important recent breakthroughs in the ongoing fight to defeat cancer, including some related to pathology and clinical laboratory diagnostics.
The article noted that approximately 10 million people die each year from cancer. “Death rates from cancer were falling before the pandemic,” the authors wrote. “But COVID-19 caused a big backlog in diagnosis and treatment.”
The Swiss-based non-profit is best known for its annual meeting of corporate and government leaders in Davos, Switzerland. Healthcare is one of 10 WEF “centers” focusing on specific global issues.
Here are four advances identified by WEF that should be of particular interest to clinical laboratory leaders. The remaining advances will be covered in part two of this ebrief on Wednesday.
“Our study represents a major leap in cancer screening, combining the precision of protein-based biomarkers with the efficiency of sex-specific analysis,” said Novelna founder and CEO Ashkan Afshin, MD, ScD (above), in a company press release. “We’re not only looking at a more effective way of detecting cancer early but also at a cost-effective solution that can be implemented on a large scale.” The 12 breakthroughs listed in the World Economic Forum’s updated article will likely lead to new clinical laboratory screening tests for multiple types of cancer. (Photo copyright: Novelna.)
Novelna’s Early-Stage Cancer Test
Novelna, a biotech startup in Palo Alto, Calif., says it has developed a clinical laboratory blood test that can detect 18 early-stage cancers, including brain, breast, cervical, colorectal, lung, pancreatic, and uterine cancers, according to a press release.
In a small “proof of concept” study, scientists at the company reported that the test identified 93% of stage 1 cancers among men with 99% specificity and 90% sensitivity. Among women, the test identified 84% of stage 1 cancers with 85% sensitivity and 99% specificity.
The researchers collected plasma samples from 440 individuals diagnosed with cancers and measured more than 3,000 proteins. They identified 10 proteins in men and 10 in women that correlated highly with early-stage cancers.
“By themselves, each individual protein was only moderately accurate at picking up early stage disease, but when combined with the other proteins in a panel they were highly accurate,” states a BMJ Oncology press release.
The company says the test can be manufactured for less than $100.
“While further validation in larger population cohorts is necessary, we anticipate that our test will pave the way for more efficient, accurate, and accessible cancer screening,” said Novelna founder and CEO Ashkan Afshin, MD, ScD, in the company press release.
Precision Oncology
According to the National Institutes of Health’s “Promise of Precision Medicine” web page, “Researchers are now identifying the molecular fingerprints of various cancers and using them to divide cancer’s once-broad categories into far more precise types and subtypes. They are also discovering that cancers that develop in totally different parts of the body can sometimes, on a molecular level, have a lot in common. From this new perspective emerges an exciting era in cancer research called precision oncology, in which doctors are choosing treatments based on the DNA signature of an individual patient’s tumor.”
“These advanced sequencing technologies not only extend lifespans and improve cure rates for cancer patients through application to early screening; in the field of cancer diagnosis and monitoring they can also assist in the formulation of personalized clinical diagnostics and treatment plans, as well as allow doctors to accurately relocate the follow-up development of cancer patients after the primary treatment,” Wang wrote.
Based in China, Genetron Health describes itself as a “leading precision oncology platform company” with products and services related to cancer screening, diagnosis, and monitoring.
Liquid and Synthetic Biopsies
Liquid biopsies, in which blood or urine samples are analyzed for presence of biomarkers, provide an “easier and less invasive” alternative to conventional surgical biopsies for cancer diagnosis, the WEF article notes.
These tests allow clinicians to “pin down the disease subtype, identify the appropriate treatment and closely track patient response, adjusting course, if necessary, as each case requires—precision medicine in action,” wrote Merck Group CEO Belén Garijo, MD, in an earlier WEF commentary.
The WEF article also highlighted “synthetic biopsy” technology developed by Earli, Inc., a company based in Redwood City, Calif.
As explained in a Wired story, “Earli’s approach essentially forces the cancer to reveal itself. Bioengineered DNA is injected into the body. When it enters cancer cells, it forces them to produce a synthetic biomarker not normally found in humans.”
The biomarker can be detected in blood or breath tests, Wired noted. A radioactive tracer is used to determine the cancer’s location in the body.
“Pancreatic cancer is one of the deadliest cancers,” the WEF article notes. “It is rarely diagnosed before it starts to spread and has a survival rate of less than 5% over five years.”
The test is based on a technology known as high-conductance dielectrophoresis (DEP), according to a UC San Diego press release. “It detects extracellular vesicles (EVs), which contain tumor proteins that are released into circulation by cancer cells as part of a poorly understood intercellular communication network,” the press release states. “Artificial intelligence-enabled protein marker analysis is then used to predict the likelihood of malignancy.”
The test detected 95.5% of stage 1 pancreatic cancers, 74.4% of stage 1 ovarian cancers, and 73.1% of pathologic stage 1A lethally aggressive serous ovarian adenocarcinomas, they wrote.
“These results are five times more accurate in detecting early-stage cancer than current liquid biopsy multi-cancer detection tests,” said co-senior author Scott M. Lippman, MD.
Look to Dark Daily’s ebrief on Wednesday for the remainder of breakthroughs the World Economic Forum identifies as top advancements in the fight to defeat cancer.
Findings could lead to new clinical laboratory cancer screening tests for BRCA1 and BRCA2 among specific population regions
Descendants of a remote Scottish island are much more likely to carry a cancer-causing BRCA2 gene than the rest of the UK. That’s according to a study conducted by the University of Edinburgh in Scotland. For pathologists and clinical laboratory managers, the study’s findings demonstrate how ongoing research into the genetic makeup of subpopulations will find groups that have higher risk for specific health conditions than the general population. Thus, diagnosticians can pay closer attention to screening these groups to achieve early diagnosis and intervention.
“The findings follow earlier research from the Viking Genes study that found a cancer-causing variant in the related BRCA1 gene, common among people from Orkney [a group of islands off Scotland’s northern coast],” noted a University of Edinburgh news release.
In their latest research, the genetic scientists discovered that the BRCA2 gene can be found in one in every 40 people with heritage from the island of Whalsay in Scotland’s Shetland island group. This gene is one of the most common genes that can be linked to breast cancer and ovarian cancer in women and breast and prostate cancer in men.
Those who inherit the BRCA2 gene have a significantly higher risk of developing certain cancers than the general population. For example, according to the National Cancer Institute, more than 60% of women who inherit the gene will develop breast cancer in their lifetimes.
The volunteers in the Viking Genes study have a risk of having a BRCA2 gene that is 130 times higher than the general UK population. According to the BBC, geneticists believe the gene can be traced back to one family from the island of Whalsay before 1750.
“It is very important to understand that just two gene changes account for more than 90% of the inherited cancer risk from BRCA variants in Orkney and Shetland. This is in stark contrast to the situation in the general UK population, where 369 variants would need to be tested to account for the same proportion of cancer risk from BRCA genes. Any future screening program for the Northern Isles should therefore be very cost-effective,” said James Wilson, DPhil, FRCPE (above), Professor of Human Genetics at University of Edinburgh and leader of the study, in a news release. Clinical laboratories in the UK will be involved in those screenings. (Photo copyright: Scottish Genomes Partnership.)
Early Diagnosis Brings Hope to Families
The UK’s National Health Service (NHS) offers genetic testing to relatives of people with a known BRCA variant. Individuals with at least one Whalsay grandparent, and who have a close family history of breast, ovarian, or prostate cancer, can also request NHS testing.
As the BBC reported, University of Edinburgh’s discovery has given families answers and hope for the future. Individuals who fit the criteria for being at risk of inheriting the BRCA gene can narrow their testing and work more specifically on preventative measures with their doctors.
Christine Glaser, a woman from Lerwick in Shetland, learned she carried the BRCA gene after participating in the study. Though the Viking genes research took place nearly a decade ago, scientific understanding of genes has improved allowing geneticists to draw new conclusions from previous studies.
Although Glaser lost her sister to ovarian cancer, she and her family were unaware of their heightened genetic risk.
“I got offered preventative measures so I could get my ovaries removed and I could get a mastectomy. So, that’s what I did … when I got my ovaries removed, they checked them and there was no cancer, but then I had a mammogram and they found cancer,” she told the BBC. Glaser’s cancer was successfully treated thanks to early detection.
Closing Gap in Genetic Testing
“This BRCA2 variant in Whalsay I think arose prior to 1750. This is why these things become so common in given places because many people descend from a couple quite far back in the past, and if they have a cancer variant, then a significant number of people today—five or even 10 generations later—will have it. This is true everywhere in Scotland, it’s just magnified in these small places,” said James Wilson, DPhil, FRCPE, Professor of Human Genetics at University of Edinburgh, who led the study on Viking genes that found individuals with familial ties to two small Scottish communities may be at a higher risk of having a cancer-causing gene.
Wilson hopes to see testing for these genetic abnormalities become more common for these at-risk communities.
“The Ashkenazi Jewish community have BRCA1 and BRCA2 variants that also have a frequency of about one in 40,” he told the BBC. “The Ashkenazi Jewish population in England are able to take part in genetic testing for these genes but that’s not yet the case in Scotland.”
The findings of the most recent University of Edinburgh genetic study are very new. Future developments and offerings from the NHS may be influenced by the results.
Deeper understanding about the genetic make-up of certain population subgroups could lead to new genetic personalized medicine and preventative testing for those at risk of hereditary cancer. In turn, it could also encourage individuals to seek preventative care earlier. Thus, pathologists and clinical laboratory managers should keep an eye on these developments and be prepared to work with geneticists who may develop new screening methods for BRCA1 and BRCA2.
Declining health of UK’s population also affecting performance of the country’s national health service, report notes
England’s National Health Service (NHS) is “in serious trouble” due to long waiting times, outdated technology, misallocated resources, and numerous other problems, with dire consequences for the country’s populace. That’s according to a new report by NHS surgeon and former Health Minister Lord Ara Darzi, OM KBE FRS FMedSci HonFREng, who was tasked by the United Kingdom’s new Labor government to investigate the ailing healthcare system. His report may contain lessons for US healthcare—including clinical laboratories—as well.
“Although I have worked in the NHS for more than 30 years, I have been shocked by what I have found during this investigation—not just in the health service but in the state of the nation’s health,” Darzi stated in a UK government press release. “We want to deliver high quality care for all but far too many people are waiting for too long and in too many clinical areas, quality of care has gone backwards.”
Many of the problems he identified relate to wait times.
“From access to GPs (general practitioners) and to community and mental health services, on to accident and emergency, and then to waits not just for more routine surgery and treatment but for cancer and cardiac services, waiting time targets are being missed,” he wrote in his report.
For example, “as of June 2024, more than one million people were waiting for community services, including more than 50,000 people who had been waiting for over a year, 80% of whom are children and young people,” he wrote.
Accident and emergency care (A/E) “is in an awful state,” the report noted, “with A/E queues more than doubling from an average of just under 40 people on a typical evening in April 2009 to over 100 in April 2024. One in 10 patients are now waiting for 12 hours or more.”
“In the last 15 years, the NHS was hit by three shocks—austerity and starvation of investment, confusion caused by top-down reorganization, and then the pandemic which came with resilience at an all-time low. Two out of three of those shocks were choices made in Westminster,” said NHS surgeon and former Health Minister Lord Ara Darzi in a government press release. “It took more than a decade for the NHS to fall into disrepair so it’s going to take time to fix it. But we in the NHS have turned things around before, and I’m confident we will do it again.” (Photo copyright: Health Data Research UK.)
Delays in Other Critical Tests
Genetic test results are lagging as well. “In 2024, more than 35,000 genomic tests are being completed each month but only around 60% on time,” Darzi wrote.
He also noted that “only around 5% of eligible patients with brain cancer are able to access whole genome sequencing (WGS), which is important for treatment selection.” Just two-thirds (65.8%) get their first treatment within 62 days, and more than 30% wait more than 31 days for radical radiotherapy, according to the report.
Overall, “the UK has appreciably higher cancer mortality rates than other countries, with no progress whatsoever made in diagnosing cancer at stage one and two between 2013 and 2021,” he wrote.
Patients have also experienced delays in access to cardiovascular treatment. For example, in 2013-2014, high-risk heart attack patients waited an average of 114 minutes for intervention to unblock an artery, Darzi noted in his report. However, in 2022-2023, the average time was 146 minutes, a 28% increase.
“For the most part, once people are in the system, they receive high quality care,” he wrote. “But there are some important areas of concerns, such as maternity care, where there have been a succession of scandals and inquiries.”
Key Factors Leading to Delays
Darzi pointed to four key factors that have led to the problems.
Lack of funding. “The 2010s was the most austere decade since the NHS was founded, with spending growing at around 1% in real terms,” Darzi wrote, compared with a long-term average of 3.4%.
One result was that administrators took funds from the capital budget to cover day-to-day needs, leading to “crumbling buildings that hit productivity,” he noted.
“The backlog maintenance bill now stands at more than £11.6 billion and a lack of capital means that there are too many outdated scanners, too little automation, and parts of the NHS are yet to enter the digital era,” he wrote.
The COVID-19 pandemic. Given the preceding “decade of austerity,” NHS had fewer resources to deal with the crisis than most other high-income health systems, he wrote. As a result, NHS “delayed, cancelled, or postponed far more routine care during the pandemic than any comparable health system.” This led to “a bigger backlog than other health systems.”
Lack of patient and staff engagement. Patient satisfaction “has declined and the number of complaints has increased, while patients are less empowered to make choices about their care,” he wrote. In addition, “too many staff have become disengaged, and there are distressingly high-levels of sickness absence—as much as one working month a year for each nurse and each midwife working in the NHS.”
Management structures and systems. Darzi laid considerable blame on the UK’s Health and Social Care Act of 2012, which led to what he described as “a costly and distracting process of almost constant reorganization of the ‘headquarters’ and ‘regulatory’ functions of the NHS.”
One consequence, he wrote, is that too many clinicians have been deployed in hospitals instead of community-based care, despite years of promises by successive governments to put more emphasis on the latter.
National Health in Decline
Along with issues within the NHS, “the health of the nation has deteriorated and that impacts its performance,” Darzi wrote. “There has been a surge in multiple long-term conditions, and, particularly among children and young people, in mental health needs. Fewer children are getting the immunizations they need to protect their health, and fewer adults are participating in some of the key screening programs, such as for breast cancer.”
Darzi’s investigation included frontline visits to NHS facilities as well as focus groups with NHS staff and patients, the press release states. He also consulted an expert reference group consisting of more than 70 organizations and examined analyses from NHS England, the UK’s Department of Health and Social Care, and external groups.
It is interesting that there is no mention of anatomic pathology and medical laboratory testing services in Lord Darzi’s report. As reported in recent years by new outlets in the United Kingdom, delays in cancer diagnoses—often as long as six months—were severe enough that, in 2018, the NHS announced funding for a program to create a national digital pathology network to improve productivity of pathologists and shorten wait times for the results of cancer tests.