News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Researchers at Several Top Universities Unveil CRISPR-Based Diagnostics That Show Great Promise for Clinical Laboratories

Three innovative technologies utilizing CRISPR-Cas13, Cas12a, and Cas9 demonstrate how CRISPR might be used for more than gene editing, while highlighting potential to develop new diagnostics for both the medical laboratory and point-of-care (POC) testing markets

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is in the news again! The remarkable genetic-editing technology is at the core of several important developments in clinical laboratory and anatomic pathology diagnostics, which Dark Daily has covered in detail for years.

Now, scientists at three universities are investigating ways to expand CRISPR’s use. They are using CRISPR to develop new diagnostic tests, or to enhance the sensitivity of existing DNA tests.

One such advancement improves the sensitivity of SHERLOCK (Specific High Sensitivity Reporter unLOCKing), a CRISPR-based diagnostic tool developed by a team at MIT. The new development harnesses the DNA slicing traits of CRISPR to adapt it as a multifunctional tool capable of acting as a biosensor. This has resulted in a paper-strip test, much like a pregnancy test, that can that can “display test results for a single genetic signature,” according to MIT News.

Such a medical laboratory test would be highly useful during pandemics and in rural environments that lack critical resources, such as electricity and clean water.

One Hundred Times More Sensitive Medical Laboratory Tests!

Co-lead authors Jonathan Gootenberg, PhD Candidate, Harvard University and Broad Institute; and Omar Abudayyeh, PhD and MD student, MIT, published their findings in Science. They used CRISPR Cas13 and Cas12a to chop up RNA in a sample and RNA-guided DNA binding to target genetic sequences. Presence of targeted sequences is then indicated using a paper-based testing strip like those used in consumer pregnancy tests.

MIT News highlighted the high specificity and ease-of-use of their system in detecting Zika and Dengue viruses simultaneously. However, researchers stated that the system can target any genetic sequence. “With the original SHERLOCK, we were detecting a single molecule in a microliter, but now we can achieve 100-fold greater sensitivity … That’s especially important for applications like detecting cell-free tumor DNA in blood samples, where the concentration of your target might be extremely low,” noted Abudayyeh.

Feng-Zhang-Broad-Institute-500w@96ppi

“The [CRISPR] technology demonstrates potential for many healthcare applications, including diagnosing infections in patients and detecting mutations that confer drug resistance or cause cancer,” stated senior author Feng Zhang, PhD. Zhang, shown above in the MIT lab named after him, is a Core Institute Member of the Broad Institute, Associate Professor in the departments of Brain and Cognitive Sciences and Biological Engineering at MIT, and a pioneer in the development of CRISPR gene-editing tools. (Photo copyright: MIT.)

Creating a Cellular “Black Box” using CRISPR

Another unique use of CRISPR technology involved researchers David Liu, PhD, and Weixin Tang, PhD, of Harvard University and Howard Hughes Medical Institute (HHMI). Working in the Feng Zhang laboratory at the Broad Institute, they developed a sort of “data recorder” that records events as CRISPR-Cas9 is used to remove portions of a cell’s DNA.

They published the results of their development of CRISPR-mediated analog multi-event recording apparatus (CAMERA) systems, in Science. The story was also covered by STAT.

“The order of stimuli can be recorded through an overlapping guide RNA design and memories can be erased and re-recorded over multiple cycles,” the researchers noted. “CAMERA systems serve as ‘cell data recorders’ that write a history of endogenous or exogenous signaling events into permanent DNA sequence modifications in living cells.”

This creates a system much like the “black box” recorders in aircraft. However, using Cas9, data is recorded at the cellular level. “There are a lot of questions in cell biology where you’d like to know a cell’s history,” Liu told STAT.

While researchers acknowledge that any medical applications are in the far future, the technology holds the potential to capture and replay activity on the cellular level—a potentially powerful tool for oncologists, pathologists, and other medical specialists.

Using CRISPR to Detect Viruses and Infectious Diseases

Another recently developed technology—DNA Endonuclease Targeted CRISPR Trans Reporter (DETECTR)—shows even greater promise for utility to anatomic pathology groups and clinical laboratories.

Also recently debuted in Science, the DETECTR system is a product of Jennifer Doudna, PhD, and a team of researchers at the University of California Berkeley and HHMI. It uses CRISPR-Cas12a’s indiscriminate single-stranded DNA cleaving as a biosensor to detect different human papillomaviruses (HPVs). Once detected, it signals to indicate the presence of HPV in human cells.

Despite the current focus on HPVs, the researchers told Gizmodo they believe the same methods could identify other viral or bacterial infections, detect cancer biomarkers, and uncover chromosomal abnormalities.

Future Impact on Clinical Laboratories of CRISPR-based Diagnostics

Each of these new methods highlights the abilities of CRISPR both as a data generation tool and a biosensor. While still in the research phases, they offer yet another possibility of improving efficiency, targeting specific diseases and pathogens, and creating new assays and diagnostics to expand medical laboratory testing menus and power the precision medicine treatments of the future.

As CRISPR-based diagnostics mature, medical laboratory directors might find that new capabilities and assays featuring these technologies offer new avenues for remaining competitive and maintaining margins.

However, as SHERLOCK demonstrates, it also highlights the push for tests that produce results with high-specificity, but which do not require specialized medical laboratory training and expensive hardware to read. Similar approaches could power the next generation of POC tests, which certainly would affect the volume, and therefore the revenue, of independent clinical laboratories and hospital/health system core laboratories.

—Jon Stone

 

Related Information:

Multiplexed and Portable Nucleic Acid Detection Platform with Cas13, Cas12a, and Csm6

Rewritable Multi-Event Analog Recording in Bacterial and Mammalian Cells

CRISPR-Cas12a Target Binding Unleashes Indiscriminate Single-Stranded DNase Activity

Researchers Advance CRISPR-Based Tool for Diagnosing Disease

CRISPR Isn’t Just for Gene Editing Anymore

CRISPR’s Pioneers Find a Way to Use It as a Glowing Virus Detector

With New CRISPR Inventions, Its Pioneers Say, You Ain’t Seen Nothin’ Yet

New CRISPR Tools Can Detect Infections Like HPV, Dengue, and Zika

Breakthrough DNA Editing Tool May Help Pathologists Develop New Diagnostic Approaches to Identify and Treat the Underlying Causes of Diseases at the Genetic Level

CRISPR-Related Tool Set to Fundamentally Change Clinical Laboratory Diagnostics, Especially in Rural and Remote Locations

Harvard Researchers Demonstrate a New Method to Deliver Gene-editing Proteins into Cells: Possibly Creating a New Diagnostic Opportunity for Pathologists

Lab-on-a-Fiber Technology Continues to Highlight Nano-Scale Clinical Laboratory Diagnostic Testing in Point-of-Care Environments

Ever shrinking “lab-on-a-…” technologies, a boon to medical laboratories and anatomic pathologists in remote resource-strapped regions, also have a place in modern labs

Researchers took another leap forward in reducing the size of clinical laboratory diagnostic tests and observational tools. This demonstration involved lab-on-a-fiber technology and showed promise in both monitoring anatomic pathology biomarkers in vivo and supplementing the abilities of existing lab-on-a-chip and microfluidic devices.

Lab-on-a-Fiber Next Technological Step Toward Miniaturization

In 2013, Dark Daily reported on research into an implantable laboratory-on-a-chip (LOC) for monitoring blood chemistry during chemotherapy. It was a major breakthrough at the time, which promised new and powerful tools for cancer treatment regimens.

However, most LOC systems aren’t designed for wet environments. Also, while microfluidics and flexible membranes allow for smaller footprints and tighter placement, they are still invasive in ways that might make patients uncomfortable or make real-world use less than ideal. And, long-term use brings further complications, such as corrosion or foreign-body granulomas.

Thus, lab-on-a-fiber’s ability to function in vivo, is one of the device’s principal advantages, as ExtremeTech noted.

Lab-on-a-fiber technology addresses many concerns. It is small enough to insert directly into organs, muscle mass, or veins when used as biosensors. And the fibers can return a wealth of information by using light and reflection, while allowing for minimal discomfort and precision placement.

Schematic of the lab-on-a-fiber biosensing principle. A metallic nanostructure supporting a resonant plasmonic mode is integrated on the optical fiber tip. When a molecular binding event occurs at the sensor surface, the reflectance peak associated to the plasmonic mode shifts towards longer wavelengths. (Image and caption copyright: Analyst/The Royal Society of Chemistry.)

The Past and Future of Scaling Clinical Laboratory Testing

Dark Daily has followed these miniaturization trends for years starting with their earliest stages. A detailed timeline of developments can be viewed in “Lab-on-a-Chip Diagnostics: When Will Clinical Laboratories See the Revolution?” from 2016.

Additional Dark Daily “lab-on-a-…” coverage includes:

In the past year, a myriad of lab-on-a-fiber applications also have received media coverage, including:

Developers believe lab-on-a-fiber approaches could offer further adaptability and functionality to other “lab-on-a-…” technologies. For example, as highlighted in Advanced Science News, researchers are employing lab-on-a-fiber technologies to further refine and improve LOC functions and designs.

“As the scientific world moves inexorably to smaller dimensions … The emerging concept of ‘lab‐on‐fiber’ will give the optical fiber platform additional (highly integrated) functionalities,” noted Deepak Uttamchandani, PhD, Vice Dean Research, Faculty of Engineering, and, Robert Blue, PhD, Research Fellow, both at the University of Strathclyde, Glasgow, UK, in their review paper, “Recent Advances In Optical Fiber Devices for Microfluidics Integration.” The paper, published in the Journal of Biophotonics, examined “the recent emergence of miniaturized optical fiber-based sensing and actuating devices that have been successfully integrated into fluidic microchannels that are part of microfluidic and lab‐on‐chip systems.”

Deepak Uttamchandani, PhD

In his review paper on the emerging concept of lab-on-a-fiber, Deepak Uttamchandani, PhD, notes, “The versatility of the optical fiber platform has already allowed researchers to conduct immunoassays in microchannels using both fluorescently‐labelled and label‐free formats whilst gaining advantages of reduced assay time and increased sensitivity.” (Photo copyright: University of Strathclyde.)

Lab-on-a-Fiber: Another Step Forward or a Major Change?

At each milestone in the scaling of clinical laboratory testing, experts and media outlets predicted the demise of big laboratories and the dawn of a POC-centric testing era. Yet, despite 20-plus years of progress, this has yet to happen.

While it is critical for anatomical pathology leaders and clinical laboratory managers to stay abreast of developments in testing technology, much of the innovation behind lab-on-a-fiber remains strictly in the research realm. Challenges to the commercialization of these new techniques include both physical factors, such as design and manufacture of ready-to-use tests, and regulatory concerns, including FDA clearances and payer approval of new assays and diagnostic procedures.

Until researchers and test manufacturers overcome these hurdles, threats to current standards and workflows are minimal. However, much like the gains in scale realized through incorporating lab-on-a-chip concepts into clinical laboratory testing, the research powering these innovations might prove useful in further improving and expanding medical laboratory testing options.

—Jon Stone

 

Related Information:

Optical Fiber Devices for Microfluidics Integration Open Up New Horizons for Advanced “Lab-on-a-Chip” Technologies

Recent Advances in Optical Fiber Devices for Microfluidics Integration

Lab-on-Fiber Technology: A New Vision for Chemical and Biological Sensing [Abstract]

Lab-on-Fiber Technology: A New Vision for Chemical and Biological Sensing [Full Downloadable PDF]

How We’re Shrinking Chemical Labs onto Optical Fibers

Lab-on-Fiber Could Shine Light on Disease

Doctors Might Soon Diagnose You by Feeding a Lab-on-a-Fiber Straight into Your Veins

Fiber-Optic Device Can Detect Stray Cancer Cells and Improve Tumor Removal: Study

Fiber Optic Probe Beats a Biopsy for Measuring Muscle Health

Lab-on-a-Chip Diagnostics: When Will Clinical Laboratories See the Revolution?

Implantable Medical Laboratory-on-a-Chip Continuously Monitors Key Chemicals in Chemotherapy and High-Risk Patients

In the Field of Nano-Scale Diagnostics, Many Researchers Are Developing ‘Lab-on-Skin’ Technologies That Can Monitor Many Clinical Laboratory Biomarkers

Hematology on a Chip: University of Southampton Develops POC Blood Analysis

Sleek ‘Lab in a Needle’ Is an All-in-One Device That Detects Liver Toxicity in Minutes during a Study, Showing Potential to Supplant Some Medical Laboratory Tests

Whole Animal Assays Use Lab-on-a-Chip at MIT

IBM and Mount Sinai Researchers Develop Innovative Medical Lab-on-a-Chip Solution

In the Field of Nano-Scale Diagnostics, Many Researchers Are Developing ‘Lab-on-Skin’ Technologies That Can Monitor Many Clinical Laboratory Biomarkers

3D Imaging of Cancer Cells Could Lead to Improved Ability of Pathologists and Radiologists to Plan Cancer Treatments and Monitor Cell Interactions

New technology from researchers at the University of Texas Southwestern Medical Center enables the ability to study cancer cells in their native microenvironments

Imaging research is one step closer to giving clinicians a way to do high-resolution scans of malignant cells in order to diagnose cancer and help identify useful therapies. If this technology were to prove successful in clinical studies, it might change how anatomic pathologists and radiologists diagnose and treat cancer.

Researchers at the University of Texas Southwestern Medical Center developed a way to create near-isotropic, high-resolution scans of cells within their microenvironments. The process involves utilizing a combination of two-photon Bessel beams and specialized filtering. (more…)

Researchers at Auburn University Collaborate with Clinical Laboratory Team at Keesler Air Force Base to Detect Antibiotic-resistant Bacteria in Just 10 Minutes

This technology could provide medical labs a quick, cost-effective way to diagnose methicillin-resistant Staphylococcus aureus

Even as in vitro diagnostics manufacturers are bringing rapid molecular tests to market that can identify infectious diseases within hours, a research collaboration involving a major university and a medical laboratory at an air force base has demonstrated the ability to identify antibiotic-resistant strains of Staphylococcus in just minutes.

This innovative research is being done by Auburn University’s College of Veterinary Medicine and clinical laboratory professionals at Keesler Air Force Base. Funding is by the U.S. Air Force. This research was of particular interest to the military because the risk for Staph infection increases when individuals are subjected to unhygienic conditions in close quarters. (more…)

Two Different Point-of-Care Test Devices for Malaria Show Why Emerging Technologies Can Be Disruptive to Clinical Pathology Laboratories

Separate research projects at University of Washington and in the United Kingdom are producing handheld diagnostic devices to accurately detect Malaria

Two new handheld, point-of-care test (POC) devices for malaria  could save millions of lives in third-world countries. At the same time, these POC devices may lead to inexpensive alternatives for diagnosing common diseases in developed nations as well.

Clinical laboratory test developers see a big opportunity in developing assays to detect Malaria. That is because an estimated 200 million cases of malaria are diagnosed annually, resulting in the death of about 100 million people each year.

Recently, two organizations released news about the specific testing devices they have developed to detect malaria. One group is at the University of Washington in Seattle, Washington. The other group is NanoMal, a biotechnology company located in the United Kingdom. (more…)

;