News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

UK Study Claims AI Reading of CT Scans Almost Twice as Accurate at Grading Some Cancers as Clinical Laboratory Testing of Sarcoma Biopsies

Radiological method using AI algorithms to detect, locate, and identify cancer could negate the need for invasive, painful clinical laboratory testing of tissue biopsies

Clinical laboratory testing of cancer biopsies has been the standard in oncology diagnosis for decades. But a recent study by the Institute of Cancer Research (ICR) and the Royal Marsden NHS Foundation Trust in the UK has found that, for some types of sarcomas (malignant tumors), artificial intelligence (AI) can grade the aggressiveness of tumors nearly twice as accurately as lab tests, according to an ICR news release.

This will be of interest to histopathologists and radiologist technologists who are working to develop AI deep learning algorithms to read computed tomography scans (CT scans) to speed diagnosis and treatment of cancer patients.

“Researchers used the CT scans of 170 patients treated at The Royal Marsden with the two most common forms of retroperitoneal sarcoma (RPS)—leiomyosarcoma and liposarcoma—to create an AI algorithm, which was then tested on nearly 90 patients from centers across Europe and the US,” the news release notes.

The researchers then “used a technique called radiomics to analyze the CT scan data, which can extract information about the patient’s disease from medical images, including data which can’t be distinguished by the human eye,” the new release states.

The scientists published their findings in The Lancet Oncology titled, “A CT-based Radiomics Classification Model for the Prediction of Histological Type and Tumor Grade in Retroperitoneal Sarcoma (RADSARC-R): A Retrospective Multicohort Analysis.”

The research team sought to make improvements with this type of cancer because these tumors have “a poor prognosis, upfront characterization of the tumor is difficult, and under-grading is common,” they wrote. The fact that AI reading of CT scans is a non-invasive procedure is major benefit, they added.

Christina Messiou, MD

“This is the largest and most robust study to date that has successfully developed and tested an AI model aimed at improving the diagnosis and grading of retroperitoneal sarcoma using data from CT scans,” said the study’s lead oncology radiologist Christina Messiou, MD, (above), Consultant Radiologist at The Royal Marsden NHS Foundation Trust and Professor in Imaging for Personalized Oncology at The Institute of Cancer Research, London, in a news release. Invasive medical laboratory testing of cancer biopsies may eventually become a thing of the past if this research becomes clinically available for oncology diagnosis. (Photo copyright: The Royal Marsden.)

Study Details

RPS is a relatively difficult cancer to spot, let alone diagnose. It is a rare form of soft-tissue cancer “with approximately 8,600 new cases diagnosed annually in the United States—less than 1% of all newly diagnosed malignancies,” according to Brigham and Women’s Hospital.

In their published study, the UK researchers noted that, “Although more than 50 soft tissue sarcoma radiomics studies have been completed, few include retroperitoneal sarcomas, and the majority use single-center datasets without independent validation. The limited interpretation of the quantitative radiological phenotype in retroperitoneal sarcomas and its association with tumor biology is a missed opportunity.”

According to the ICR news release, “The [AI] model accurately graded the risk—or how aggressive a tumor is likely to be—[in] 82% of the tumors analyzed, while only 44% were correctly graded using a biopsy.”

Additionally, “The [AI] model also accurately predicted the disease type [in] 84% of the sarcomas tested—meaning it can effectively differentiate between leiomyosarcoma and liposarcoma—compared with radiologists who were not able to diagnose 35% of the cases,” the news release states.

“There is an urgent need to improve the diagnosis and treatment of patients with retroperitoneal sarcoma, who currently have poor outcomes,” said the study’s first author Amani Arthur, PhD, Clinical Research Fellow at The Institute of Cancer Research, London, and Registrar at The Royal Marsden NHS Foundation Trust, in the ICR news release.

“The disease is very rare—clinicians may only see one or two cases in their career—which means diagnosis can be slow. This type of sarcoma is also difficult to treat as it can grow to large sizes and, due to the tumor’s location in the abdomen, involve complex surgery,” she continued. “Through this early research, we’ve developed an innovative AI tool using imaging data that could help us more accurately and quickly identify the type and grade of retroperitoneal sarcomas than current methods. This could improve patient outcomes by helping to speed up diagnosis of the disease, and better tailor treatment by reliably identifying the risk of each patient’s disease.

“In the next phase of the study, we will test this model in clinic on patients with potential retroperitoneal sarcomas to see if it can accurately characterize their disease and measure the performance of the technology over time,” Arthur added.

Importance of Study Findings

Speed of detection is key to successful cancer diagnoses, noted Richard Davidson, Chief Executive of Sarcoma UK, a bone and soft tissue cancer charity.

“People are more likely to survive sarcoma if their cancer is diagnosed early—when treatments can be effective and before the sarcoma has spread to other parts of the body. One in six people with sarcoma cancer wait more than a year to receive an accurate diagnosis, so any research that helps patients receive better treatment, care, information and support is welcome,” he told The Guardian.

According to the World Health Organization, cancer kills about 10 million people worldwide every year. Acquisition and medical laboratory testing of tissue biopsies is both painful to patients and time consuming. Thus, a non-invasive method of diagnosing deadly cancers quickly, accurately, and early would be a boon to oncology practices worldwide and could save thousands of lives each year.

—Kristin Althea O’Connor

Related Information:

AI Twice as Accurate as a Biopsy at Grading Aggressiveness of Some Sarcomas

AI Better than Biopsy at Assessing Some Cancers, Study Finds

AI Better than Biopsies for Grading Rare Cancer, New Research Suggests

A CT-based Radiomics Classification Model for the Prediction of Histological Type and Tumor Grade in Retroperitoneal Sarcoma (RADSARC-R): A Retrospective Multicohort Analysis

When Screening for Esophageal and Gastrointestinal Cancer, Rice University’s Low-Cost Microendoscope Could Reduce Need to Send Biopsies to Pathologists

This low-cost solution opens new doors for low-resource regions and, in many cases, allows operators to rule out malignancy without the need for a pathologist to review biopsies

Rapid development of endoscopic technologies is bringing medical professionals closer to point-of-care pathology than ever before. The goal is to allow physicians to identify diseased or cancerous tissue in situ and reduce or eliminate the need to biopsy tissue for examination by surgical pathologists.

Researchers at Rice University in Houston are developing a high-resolution microendoscope (HRME) that offers the ability to view tissue at a subcellular level. This fiber optic probe would reduce the need to collect the biopsy that is typically sent to anatomic pathologists for analysis.

Measuring 1-mm in diameter, the probe works using the existing accessory channel of the endoscope. Touching it to the surface of the tissue provides real-time in vivo images to the technician at up to 12 frames per second on an accompanying tablet display. Images are enhanced using visual overlays and an algorithm that highlights the nuclei of cells within the field of view. The HRME system is battery powered and fits in a briefcase for easy transport. (more…)

Attention Pathologists! New Prostate Cancer Test Has CPT Code, NCCN Guideline Recommendation, and Potential Market of One Million Prostate Biopsies Annually

OPKO Health’s 4Kscore test predicts the rate of high-risk prostate cancer and may become a useful business case study for other labs developing proprietary diagnostic tests

Clinical laboratories and biotech companies with new medical laboratory tests are struggling to win coverage by Medicare and private payers. How big is this problem? There are currently tens of thousands of molecular diagnostic assays and genetic tests offered for clinical use.

Any lab company seeking to obtain an appropriate Current Procedural Terminology (CPT) code, favorable coverage guidelines, and adequate reimbursement from health insurers for its new lab test faces three big challenges, and they are related. First, payers are simply overwhelmed with requests to review new genetic tests. The flood of new test submissions exceeds the capability of payers to respond.

Most Payers May Not Have Right Scientific Expertise to Evaluate Genetic Tests

Second, most health insurance plans lack physicians and medical professionals who have the necessary experience in laboratory medicine, molecular diagnostics, and genetic medicine to evaluate these lab test submissions in a knowledgeable way. (more…)

University of Texas Researchers Reveal a Portable Cancer Detection Device with the Potential to Significantly Reduce the Number of Skin Biopsies Sent to Dermatopathologists

Team of bioengineers succeeds in putting three different imaging technologies into a handheld probe that could be used by physicians to assess skin lesions in their offices

Dermatopathologists and pathology practice administrators will be keenly interested in a new, hand-held diagnostic device that is designed to reduce the need for skin biopsies. Because of high volume of skin biopsies referred to pathologists, any significant reduction in the number of such case referrals would have negative revenue impact on medical laboratories  that process and diagnose these specimens.

This innovative work was done at the University of Texas at Austin’s Cockrell School of Engineering. The research team developed a probe that uses three different light modalities to detect melanoma and other skin cancer lesions in real-time, according to a news release.
(more…)

Study of Cross-Contamination of Biopsy Specimens in 69 Anatomic Pathology Laboratories Raises Concerns about Test Quality and Patient Safety

Extraneous tissue cross-contamination found in all participating pathology laboratories Cross-tissue contamination, regardless of specimen volume or how frequently reagents were changed

Pathologists and histotechnologists have long known that traditional methods of processing tissue for diagnosis have the potential to cross-contaminate human biopsy specimens. This risk to patient safety and diagnostic accuracy was accepted over the decades because of the limitations of technology and inability to more precisely measure the performance of individual work processes in the histology laboratory.

In recent years, two things have begun to change this long-standing status quo in medical laboratories. These developments now make it possible to more accurately measure the performance of histology work processes. In turn, this allows an understanding of the true rate of errors that happen from the time a human biopsy specimen arrives in the anatomic pathology laboratory until the completed slides are ready to be diagnosed by a pathologist. (more…)

;