News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Samsung Medical Center Combines 5G with Digital Pathology to Speed Anatomic Pathologist’s Readings of Frozen Sections, Cuts Test TAT in Half

HIMSS names SMC a ‘world leader’ in digital pathology and awards the South Korean Healthcare provider Stage 7 DIAM status  

Anatomic pathologists and clinical laboratory managers in hospitals know that during surgery, time is of the essence. While the patient is still on the surgical table, biopsies must be sent to the lab to be frozen and sectioned before going to the surgical pathologist for reading. Thus, shortening time to answer for frozen sections is a significant benefit.

To address an overwhelming number of frozen section tests and delays in surgical pathology turnaround times (TATs), Samsung Medical Center (SMC) in Seoul, South Korea, used 5G network connectivity to develop an integrated digital pathology system that is “enhancing the speed of clinical decision-making across its facilities,” according to Healthcare IT News

This effort in surgical pathology is part of a larger story of the digital transformation underway across all service lines at this hospital. For years, SMC has been on track to become one of the world’s “intelligent hospitals,” and it is succeeding. In February, SMC became the first healthcare provider to achieve Stage 7 in the HIMSS Digital Imaging Adoption Model (DIAM), which “assesses an organization’s capabilities in the delivery of medical imaging,” Healthcare IT News reported.

As pathologists and clinical laboratory leaders know, implementation of digital pathology is no easy feat. So, it’s noteworthy that SMC has brought together disparate technologies to reduce turnaround times, and that the medical center has caught the eye of leading health information technology (HIT) organizations. 

Kee Taek Jang, MD

“The digital pathology system established by the pathology department and SMC’s information strategy team could be one of the good examples of the fourth industrial revolution model applied to a hospital system,” anatomic pathologist Kee Taek Jang, MD (above), Professor of Pathology, Sungkyunkwan University School of Medicine, Samsung Medical Center told Healthcare IT News. Clinical laboratory leaders and surgical pathologists understand the value digital pathology can bring to faster turnaround times. (Photo copyright: Samsung Medical Center.)

Anatomic Pathologists Can Read Frozen Sections on Their Smartphones

Prior to implementation of its 5G digital pathology system, surgeons and their patients waited as much as 20 minutes for anatomic pathologists to traverse SMC’s medical campus to reach the healthcare provider’s cancer center diagnostic reading room, Healthcare IT News reported.

Now, SMC’s integrated digital pathology system—which combines slide scanners, analysis software, and desktop computers with a 5G network—has enabled a “rapid imaging search across the hospital,” Healthcare IT News noted. Surgical pathologists can analyze tissue samples faster and from remote locations on digital devices that are convenient to them at the time, a significant benefit to patient care.

“The system has been effective in reducing the turnaround time as pathologists can now attend to frozen test consultations on their smartphone or tablet device via 5G network anywhere in the hospital,” Jean-Hyoung Lee, SMC’s Manager of IT Infrastructure, told Healthcare IT News which noted these system results:

Additionally, through the 5G network, pathologists can efficiently access CT scans and MRI data on proton therapy cancer treatments. Prior to the change, the doctors had to download the image files in SMC’s Proton Therapy Center, according to a news release from KT Corporation, a South Korean telecommunications company that began working with SMC on building the 5G-connected digital pathology system in 2019.

SMC Leads in Digital Pathology: HIMSS

Earlier this year, HIMSS named SMC a “world leader” in digital pathology and first to reach Stage 7 in the Digital Imaging Adoption Model (DIAM), Healthcare IT News reported.

DIAM is an approach for gauging an organization’s medical imaging delivery capabilities. To achieve Stage 7—External Image Exchange and Patient Engagement—healthcare providers must also have achieved all capabilities outlined in Stages 5 and 6.

In addition, the following must also have been adopted:

  • The majority of image-producing service areas are exchanging and/or sharing images and reports and/or clinical notes based on recognized standards with care organizations of all types, including local, regional, or national health information exchanges.
  • The application(s) used in image-producing service areas support multidisciplinary interactive collaboration.
  • Patients can make appointments, and access reports, images, and educational content specific to their individual situation online.
  • Patients are able to electronically upload, download, and share their images.

“This is the most comprehensive use of integrated digital pathology we have seen,” Andrew Pearce, HIMSS VP Analytics and Global Advisory Lead, told Healthcare IT News.

SMC’s Manager of IT Planning Seungho Lim told Healthcare IT News the medical center’s goal is to become “a global advanced intelligent hospital through digital health innovation.” The plan is to offer, he added, “super-gap digital services that prioritize non-contact communication and cutting-edge technology.”

For pathologists and clinical laboratory leaders, SMC’s commitment to 5G to move digital pathology data is compelling. And its recognition by HIMSS could inspire more healthcare organization to make changes in medical laboratory workflows. SMC, and perhaps other South Korean healthcare providers, will likely continue to draw attention for their healthcare IT achievements.   

Donna Marie Pocius

Related Information:

Using 5G to Cut Down Diagnostic Reading by Half

KT and Samsung Medical Center to Build 5G Smart Hospital

Samsung Medical Center Achieves Stage 7 DIAM and EMRAM

Finding the Future of Care Provision: the Role of Smart Hospitals

K-Hospital Fair 2022, Success in Digital Transformation (DX) Introducing “Smart Logistics”

Digital Health Market to Hit $809.2 Billion by 2030: Grand View Research, Inc.

South Korea: The Perfect Environment for Digital Health

University of East Anglia Researchers Develop Non-Invasive Prostate Cancer Urine Test

The researchers believe their test ‘could reduce the number of unnecessary prostate cancer biopsies by 32%,’ UEA reported

New diagnostic technologies may make it possible for men to provide a urine sample that can allow a clinical laboratory to not only accurately diagnose prostate cancer but also help determine whether it is an aggressive form of prostate cancer. Researchers in the United Kingdom (UK) recently described just such a test in an online, peer-reviewed journal.

Development of a non-invasive method of diagnosing prostate cancer would be significant for anatomic pathologists in the United States. In the US alone, approximately 248,000 men will be diagnosed with this type of cancer in 2021. Prostate biopsies represent a major proportion of case referrals to community pathology groups.

Moreover, were such a non-invasive test for prostate cancer also able to identify those individuals with fast-growing prostate cancers, that would help urologists make more informed treatment decisions.

A Disease Men More Commonly Die ‘With’ Rather than ‘From’

According to CDC statistics, most men over the age of 80 will have some form of slow-growing prostate cancer when they die. However, a percentage of men each year contract a rapidly growing aggressive form of the cancer, and until recently, diagnosing which cancer a patient was fighting often required multiple invasive prostate needle biopsies. But that may soon change.

Researchers at the University of East Anglia (UEA) Norwich Medical School in the United Kingdom (UK) have developed a non-invasive urine test for prostate cancer that they say also can determine the aggressiveness of the disease. Knowing this may help physicians better assess a patient’s risk prior to ordering invasive needle biopsies, a UEA article notes.

The UEA test may also allow for self-collection of the biological sample, and if it proves accurate, the test could bring additional revenue to clinical laboratories that would perform the urine testing.

The UEA researchers published their study in the peer-reviewed open-access journal Cancers, titled, “Integration of Urinary EN2 Protein and Cell-Free RNA Data in the Development of a Multivariable Risk Model for the Detection of Prostate Cancer Prior to Biopsy.”

“In this work we develop a test that predicts whether a patient has prostate cancer and how aggressive the disease is from a urine sample. This model combines the measurement of a protein-marker called EN2 and the levels of 10 genes measured in urine and proves that integration of information from multiple, non-invasive biomarker sources has the potential to greatly improve how patients with a clinical suspicion of prostate cancer are risk-assessed prior to an invasive biopsy,” they wrote.

“While prostate cancer is responsible for a large proportion of all male cancer deaths, it is more commonly a disease men die with rather than from,” said Daniel Brewer, PhD, one of the lead researchers on this study. “Therefore, there is a desperate need for improvements in diagnosing and predicting outcomes for prostate cancer patients to minimize over-diagnosis and overtreatment whilst appropriately treating men with aggressive disease, especially if this can be done without taking an invasive biopsy.

“Invasive biopsies come at considerable economic, psychological, and societal cost to patients and healthcare systems alike,” he added. Brewer is Senior Lecturer in Cancer Bioinformatics and a group leader within the Cancer Genetics Team at UEA’s Norwich Medical School.

Daniel-Brewer-PhD

“Our new urine test not only shows whether a patient has prostate cancer, but it importantly shows how aggressive the disease is. This allows patients and doctors to select the correct treatment,” said Daniel Brewer, PhD (above), Senior Lecturer and Lead Researcher, UEA Norwich Medical School, in the news release. (Photo copyright: Eastern Daily Press.)

Possibility of Reducing Needle Biopsies by 32%

Called “ExoGrail,” the UEA’s new test builds on their earlier development of the Prostate Urine Risk (PUR) and ExoMeth tests. The test works by integrating two biomarkers.

  • Measurements of EN2, a protein-marker, and
  • Levels of gene expression of 10 genes related to prostate cancer.

The researchers tested ExoGrail on urine samples from 207 patients at Norfolk and Norwich University Hospital (NNUH) who also had needle biopsy samples available.

According to the published study, the UEA ExoGrail urine test enabled:

  • Results comparable to the biopsy findings.
  • Identification of people with prostate cancer and people without it.
  • Risk scoring that noted aggressive prostate cancer and need for biopsy.
  • Potential to reduce unnecessary biopsies by 32%.

“ExoGrail resulted in accurate predictions even when serum PSA [protein-specific antigen] levels alone proved inaccurate; patients with a raised PSA but negative biopsy result possessed ExoGrail scores significantly different from both clinically benign patients and those with low-grade Gleason 6 disease, whilst still able to discriminate between more clinically significant Gleason ≥ 7 cancers,” the researchers stated in their published study.

“The adoption of ExoGrail into current clinical pathways for reducing unnecessary biopsies was considered, showing the potential for up to 32% of patients to safely forgo an invasive biopsy without incurring excessive risk,” they noted.

Prostate Cancer Patients May Soon Have Options

While more research is needed, the new UEA Norwich Medical School ExoGrail test introduces compelling non-invasive methods for diagnosing prostate cancer. Patients with findings of aggressive cancer can proceed to biopsies, while others determined to have non-aggressive forms of prostate cancer may be able to avoid more invasive tests and the associated costs and stress.

Additionally, men may soon be able to collect their own specimens without the need to visit the primary care doctor or a patient service center.

A follow-up study underway at the University of East Anglia and the NNUH involves sending 2,000 men in the UK, Europe, and Canada home testing “prostate screening boxes” to “to collect men’s urine samples at-home,” according to a UEA new release, which noted that “the Prostate Screening Box has been developed in collaboration with REAL Digital International Limited to create a kit that fits through a standard letterbox.”

“We have developed the PUR (Prostate Urine Risk) test, which looks at gene expression in urine samples and provides vital information about whether a cancer is aggressive or ‘low risk,’” said Jeremy Clark, PhD, Senior Research Associate at UEA’s Norwich Medical School.

“The Prostate Screening Box part sounds like quite a small innovation, but it means that in future the monitoring of cancer in men could be so much less stressful for them and reduce the number of expensive trips to the hospital,” he added.

Anatomic pathologists and clinical laboratory managers will want to follow the progress of these clinical studies. A non-invasive, urine-based test for prostate cancer could be a game-changer if it can detect prostate cancer with comparable accuracy to the tissue-based diagnostics that are the current standard of care in the diagnosis of prostate cancer.

—Donna Marie Pocius

Related Information:

Integration of Urinary EN2 Protein and Cell-Free RNA Data in the Development of a Multivariable Risk Model for the Detection of Prostate Cancer Prior to Biopsy

New Prostate Cancer Urine Test Shows How Aggressive Disease Is and Could Reduce Invasive Biopsies

Tests to Diagnose and Stage Prostate Cancer

Prostate Cancer Key Statistics

UEA Researchers Develop Prostate Cancer Test That Could Reduce Biopsies

Thousands of Men to Trial Prostate Cancer Home Testing Kit

University of Queensland Researches May Have Found a Universal Biomarker That Identifies Cancer in Various Human Cells in Just 10 Minutes!

This research could lead to a useful liquid biopsy test that would be a powerful new tool for clinical laboratories and anatomic pathologists

Cancer researchers have long sought the Holy Grail of diagnostics—a single biomarker that can quickly detect cancer from blood or biopsied tissue. Now, researchers in Australia may have found that treasure. And the preliminary diagnostic test they have developed reportedly can return results in just 10 minutes with 90% accuracy.

In a news release, University of Queensland researchers discussed identifying a “simple signature” that was common to all forms of cancer, but which would stand out among healthy cells. This development will be of interest to both surgical pathologists and clinical laboratory managers. Many researchers looking for cancer markers in blood are using the term “liquid biopsies” to describe assays they hope to develop which would be less invasive than a tissue biopsy.

“This unique nano-scaled DNA signature appeared in every type of breast cancer we examined, and in other forms of cancer including prostate, colorectal, and lymphoma,” said Abu Sina, PhD, Postdoctoral Research Fellow at the Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), in the news release.

“We designed a simple test using gold nanoparticles that instantly change color to determine if the three-dimensional nanostructures of cancer DNA are present,’ said Matt Trau, PhD, Professor of Chemistry at the University of Queensland, and Deputy Director and Co-Founder of UQ’s AIBN, in the news release.

The team’s test is preliminary, and more research is needed before it will be ready for Australia’s histopathology laboratories (anatomic pathology labs in the US). Still, UQ’s research is the latest example of how increased knowledge of DNA is making it possible for researchers to identify new biomarkers for cancer and other diseases.

“We certainly don’t know yet whether it’s the holy grail for all cancer diagnostics, but it looks really interesting as an incredibly simple universal marker of cancer, and as an accessible and inexpensive technology that doesn’t require complicated lab-based equipment like DNA sequencing,” Trau added.

Such a diagnostic test would be a boon to clinical laboratories and anatomic pathology groups involved in cancer diagnosis and the development of precision medicine treatments.

One Test, 90% Accuracy, Many Cancers

The UQ researchers published their study in the journal Nature Communications. In it, they noted that “Epigenetic reprogramming in cancer genomes creates a distinct methylation landscape encompassing clustered methylation at regulatory regions separated by large intergenic tracks of hypomethylated regions. This methylation landscape that we referred to as ‘Methylscape’ is displayed by most cancer types, thus may serve as a universal cancer biomarker.”

While methyl patterning is not new, the UQ researchers say they were the first to note the effects of methyl pattern in a particular solution—water. With the aid of transmission electron microscopy, the scientists saw DNA fragments in three-dimensional structures in the water. But they did not observe the signature in normal tissues in water.

Methylation are marks that indicate whether pieces of DNA should be read,” Dino DiCarlo, PhD, Professor in the Department of Bioengineering and Biomedical Engineering, University of California Los Angeles (UCLA) and Director of Cancer Nanotechnology at UCLA’s Jonsson Comprehensive Cancer Center, told USA Today.


“To date, most research has focused on the biological consequences of DNA Methylscape changes, whereas its impact on DNA physicochemical properties remains unexplored,” UQ scientists Matt Trau, PhD (left), Abu Sina, PhD (center), and Laura Carrascosa (right), wrote in their study. “We exploit these Methylscape differences to develop simple, highly sensitive, and selective electrochemical or colorimetric one-step assays for the detection of cancer.” (Photo copyright: University of Queensland.)

Their test averaged 90% accuracy during the testing of 200 human cancer samples. Furthermore, the researchers found the DNA structure to be the same in breast, prostate, and bowel cancers, as well as lymphomas, noted The Conversation.

“We find that DNA polymeric behavior is strongly affected by differential patterning of methylcytosine leading to fundamental differences in DNA solvation and DNA-gold affinity between cancerous and normal genomes,” the researchers wrote in NatureCommunications.“We exploit these methylscape differences to develop simple, highly sensitive, and selective electrochemical or one-step assays for detection of cancer.”

Next Steps for the “Gold Test”

“This approach represents an exciting step forward in detecting tumor DNA in blood samples and opens up the possibility of a generalized blood-based test to detect cancer, Ged Brady, PhD, Cancer Research UK Manchester Institute, told The Oxford Scientist. “Further clinical studies are required to evaluate the full clinic potential of the method.”

Researchers said the next step is a larger clinical study to explore just how fast cancer can be detected. They expressed interest in finding different cancers in body fluids and at various stages. Another opportunity they envision is to use the cancer assay with a mobile device.

DiCarlo told USA Today that such a mobile test could be helpful to clinicians needing fast answers for people in rural areas. However, he’s also concerned about false positives. “You don’t expect all tumors to have the same methylation pattern because there’s so many different ways that cancer can develop,” he told USA Today. “There are some pieces that don’t exactly align logically.”

The UQ researchers have produced an intriguing study that differs from other liquid biopsy papers covered by Dark Daily. While their test may need to be used in combination with other diagnostic tests—MRI, mammography, etc.—it has the potential to one day be used by clinical laboratories to quickly reveal diverse types of cancers.  

—Donna Marie Pocius

Related Information:

Nano-Signature Discovery Could Revolutionize Cancer Diagnosis

Epigentically Reprogrammed Methylation Landscape Drives the DNA Self-Assembly and Serves as a Universal Cancer Biomarker

One Test to Diagnose Them All: Researchers Exploit Cancers’ Unique DNA Signature

Cancer Researchers in Australia Develop Universal Blood Test

Universal 10-Minute Cancer Test in Sight

A 10-Minute, Universal Blood Test for Cancer

Sound Wave Acoustic Tweezers Locate and Isolate Circulating Tumor Cells in Liquid Biopsies; Could Lead to Less Invasive Cancer Diagnostics and Treatments

Pathologists will be interested to learn that this latest version of the acoustic tweezer device requires about five hours to identify the CTCs in a sample of blood

Medical laboratory leaders and pathologists are well aware that circulating tumor cells (CTCs) released by primary tumors into the bloodstream are fragile and easily damaged. Many studies have sought to find ways to separate CTCs from surrounding cells. Such a process could then be used as an early-detection biomarker to detect cancer from a sample of blood.

One team of researchers believe it has a way to accomplish this. These researchers are using sound waves to gently detect and isolate CTCs in blood samples. In turn, this could make it possible to diagnose cancer using “liquid biopsies” as opposed to invasive conventional biopsies.

Researchers from Carnegie Mellon University (CMU) in collaboration with researchers from the Massachusetts Institute of Technology (MIT) and Pennsylvania State University (Penn State) have developed a method for using acoustic tweezers and sound waves to separate blood-borne cancer cells from white blood cells. The research team believes this new device could one day replace invasive biopsies, according to a CMU article. (more…)

New Clinical Laboratory Test Exposes Cancer Cells with Ultra Violet Light: Improves Accuracy of Current Cancer Assays, Say Researchers

New technology accurately distinguishes between cancerous cells and healthy cells. Will it give pathologists a “universal” assay for cancer diagnosis?

In England, a university team has developed a new technology for detecting circulating cancer cells in blood. Their method uses ultraviolet light and the results are so promising that efforts are now underway to develop this method into a clinical laboratory test.

That is why pathologists and medical laboratory professionals may soon have a new tool in their arsenal: one that significantly aids physicians and medical laboratories in the diagnosis of cancer. (more…)

;