News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

UPMC Researchers Develop Biomarkers That Identify Biological Age While Also Predicting Disease Risk

Scientists turned to metabolomics to find cause of biological aging and release index of 25 metabolites that predict healthy and rapid agers

Researchers at the University of Pittsburg Medical Center and the University of Pittsburgh School of Medicine have identified biomarkers in human blood which appear to affect biological aging (aka, senescence). Since biological aging is connected to a person’s overall condition, further research and studies confirming UPMC’s findings will likely lead to a new panel of tests clinical laboratories can run to support physicians’ assessment of their patients’ health.

UPMC’s research “points to pathways and compounds that may underlie biological age, shedding light on why people age differently and suggesting novel targets for interventions that could slow aging and promote health span, the length of time a person is healthy,” according to a UPMC news release.

“We decided to look at metabolites because they’re very dynamic,” Aditi Gurkar, PhD, the study’s senior author, told the Pittsburgh Post-Gazette. Gurkar is Assistant Professor of Medicine, Division of Geriatric Medicine, Aging Institute at the University of Pittsburg. “They can change because of the diet, they can change because of exercise, they can change because of lifestyle changes like smoking,” she added.

The scientists identified 25 metabolites that “showed clear differences” in the metabolomes of both healthy and rapid agers. Based on those findings, the researchers developed the Healthy Aging Metabolic (HAM) Index, a panel of metabolites that predicted healthy agers regardless of gender or race.

The researchers published their findings in the journal Aging Cell titled, “A Molecular Index for Biological Age Identified from the Metabolome and Senescence-associated Secretome in Humans.”

“Age is more than just a number,” said Aditi Gurkar, PhD (above), Assistant Professor of Geriatric Medicine at University of Pittsburg School of Medicine and the study’s senior author in a news release. “Imagine two people aged 65: One rides a bike to work and goes skiing on the weekends and the other can’t climb a flight of stairs. They have the same chronological age, but very different biological ages. Why do these two people age differently? This question drives my research.” Gurkar’s research may one day lead to new clinical laboratory tests physicians will order when evaluating their patients’ health. (Photo copyright: University of Pittsburg.)

Clear Differences in Metabolites

According to the National Cancer Institute, a metabolite is a “substance made or used when the body breaks down food, drugs, or chemicals, or its own tissue (for example, fat or muscle tissue). This process, called metabolism, makes energy and the materials needed for growth, reproduction, and maintaining health. It also helps get rid of toxic substances.”

The UPMC researchers used metabolomics—the study of chemical process in the body that involves metabolites, other processes, and biproducts of cell metabolism—to create a “molecular fingerprint” of blood drawn from individuals in two separate study groups.

They included:

  • People over age 75 able to walk a flight of stairs or walk for 15 minutes without a break, and
  • People, age 65 to 75, who needed to rest during stair climbing and walk challenges.

The researchers found “clear differences” in the metabolomes of healthy agers as compared to rapid agers, suggesting that “metabolites in the blood could reflect biological age,” according to the UPMC news release.

“Other studies have looked at genetics to measure biological aging, but genes are very static. The genes you’re born with are the genes you die with,” said Gurkar in the news release.

Past studies on aging have explored other markers of biological age such as low grade-inflammation, muscle mass, and physical strength. But those markers fell short in “representing complexity of biological aging,” the UPMC study authors wrote in Aging Cell.

“One potential advantage of metabolomics over other ‘omic’ approaches is that metabolites are the final downstream products, and changes are closely related to the immediate (path) physiologic state of an individual,” they added.

The researchers used an artificial intelligence (AI) model that could identify “potential drivers of biological traits” and found three metabolites “that were most likely to promote healthy aging or drive rapid aging. In future research, they plan to delve into how these metabolites, and the molecular pathways that produce them, contribute to biological aging and explore interventions that could slow this process,” the new release noted.

“While it’s great that we can predict biological aging in older adults, what would be even more exciting is a blood test that, for example, can tell someone who’s 35 that they have a biological age more like a 45-year-old,” Gurkar said. “That person could then think about changing aspects of their lifestyle early—whether that’s improving their sleep, diet or exercise regime—to hopefully reverse their biological age.”

Looking Ahead

The UPMC scientists plan more studies to explore metabolites that promote healthy aging and rapid aging, and interventions to slow disease progression.

It’s possible that the blood-based HAM Index may one day become a diagnostic tool physicians and clinical laboratories use to aid monitoring of chronic diseases. As a commonly ordered blood test, it could help people find out biological age and make necessary lifestyle changes to improve their health and longevity.

With the incidence of chronic disease a major problem in the US and other developed countries, a useful diagnostic and monitoring tool like HAM could become a commonly ordered diagnostic procedure. In turn, that would allow clinical laboratories to track the same patient over many years, with the ability to use multi-year lab test data to flag patients whose biomarkers are changing in the wrong direction—thus enabling physicians to be proactive in treating their patients.

—Donna Marie Pocius

Related Information:

New Study Reveals Molecular Fingerprint of Biological Aging

Blood Test Could Reveal Your Biological Age and Predict Disease Risk

A Molecular Index for Biological Age Identified from the Metabolome and Senescence-associated Secretome in Humans

Family History with Cancer Led Professor into “Healthy Aging” Research

Zombie Cells, Aging and Health

Pitt Researcher Uncovers Cellular Signs of Healthy Aging

True Biological Age is Hidden in Several Newly Identified Blood Markers

The Senescence-associated Secretome as An Indicator of Age and Medical Risk

University of Warwick Researchers Identity Blood Protein Biomarkers That Can Predict Dementia Onset Years in Advance

With further study, this research may provide clinical laboratories with a new proteomic biomarker for dementia screenings that identifies risk more than 10 years before symptoms appear

Researchers at the University of Warwick in the UK and Fudan University in Shanghai, China, identified four protein biomarkers in blood that they say can predict dementia up to 15 years before diagnosis. They say these biomarkers may lead to clinical laboratory blood tests that offer alternatives to costly brain scans and lumbar punctures for diagnosis of dementia.

The scientists “used the largest cohort of blood proteomics and dementia to date,” according to a University of Warwick news release. This included taking blood from 52,645 “healthy” people without dementia who participated in the UK Biobank—a population-based study cohort, the new release noted.

“The proteomic biomarkers are [easy] to access and non-invasive, and they can substantially facilitate the application of large-scale population screening,” said neurovegetative disease specialist Jin-tai Yu, MD, PhD, a professor at Fudan University and co-author of the study, in the news release.

The scientists published their findings in the journal Nature Aging titled, “Plasma Proteomic Profiles Predict Future Dementia in Healthy Adults.”

“The advent of proteomics offers an unprecedented opportunity to predict dementia onset,” the researchers wrote.

“This is a well-conducted study that adds to what we know about changes in blood that occur very early in diseases that cause dementia, which will be important for early diagnosis in the future,” said Tara Spires-Jones, PhD, in a post from the Science Media Center in the UK. “However,” she added, “it is important to note that these are still scientific research studies and that there are currently no blood tests available for routine use that can diagnose dementia with certainty.

Jones, who was not involved in the study, is President of the British Neuroscience Association (BNA) and group leader of the UK Dementia Research Institute at the University of Edinburgh.

“Based on this study, it does seem likely that blood tests will be developed that can predict risk for developing dementia over the next 10 years, although individuals at higher risk often have difficulty knowing how to respond,” Suzanne Schindler, MD, PhD (above), told Reuters. Schindler, an Associate Professor of Neurology at Washington University in St. Louis, was not involved in the research. Clinical laboratories may soon have a new blood test for dementia. (Photo copyright: VJDementia.)

Predicting Onset of Dementia with 90% Accuracy

The researchers analyzed 52,645 blood samples from the UK Biobank (UKBB). The samples were collected between 2006 and 2010 from healthy individuals who at that time were without dementia.

By March 2023, 1,417 of the study participants had developed Alzheimer’s disease or some other form of dementia. The researchers looked at 1,463 proteins and identified four that were present in high levels among those people:

“Individuals with higher GFAP levels were 2.32 times more likely to develop dementia,” the researchers wrote in Nature Aging. “Notably, GFAP and LTBP2 were highly specific for dementia prediction. GFAP and NEFL began to change at least 10 years before dementia diagnosis.”

When adding known risk factors such as age, sex, and genetics, the researchers said they could predict onset of dementia with 90% accuracy, according to the University of Warwick news release.

“Our findings strongly highlight GFAP as an optimal biomarker for dementia prediction, even more than 10 years before the diagnosis, with implications for screening people at high risk for dementia and for early intervention,” the researchers wrote.

The news release also noted that smaller studies had already identified some of the proteins as potential biomarkers, “but this new research was much larger and conducted over several years.”

Further Validation Needed

Amanda Heslegrave, PhD, of the UK Dementia Research Institute, University College London described the UKBB as “an excellent resource” in the Science Media Center (SMC) post. However, she noted, it’s “a highly curated biobank and may not capture all populations that we need to know the risk for. The new biomarkers identified will need further validation before being used as screening tools.”

Another expert raised additional questions about the University of Warwick/Fudan University study in the SMC post.

“These results may help researchers understand the biological systems involved in the development of dementia,” said David Curtis, MD, PhD, of the UCL Genetics Institute at University College London. “However in my view the strengths of the reported associations are not really strong enough to say that these would form a useful test for predicting who will get dementia in the future.”

Conversely, Curtis pointed to other studies suggesting that phosphorylated tau (p-tau) proteins are better candidates for developing a simple blood test.

P-tau “provides a very good indicator of whether the pathological processes leading to Alzheimer’s disease are present in the brain,” he said. “When effective treatments for Alzheimer’s disease are developed it will be very helpful indeed to have simple blood tests—such as measuring phosphorylated tau—available in order to identify who could benefit.”

At least two blood tests based on the p-tau217 variant—from ALZpath and C2N—are currently available to US clinicians as laboratory developed tests (LDT).

In “University of Gothenburg Study Findings Affirm Accuracy of Clinical Laboratory Blood Test to Diagnose Alzheimer’s Disease,” Dark Daily reported on a study from the University of Gothenburg in Sweden which found that the ALZpath test was as good or better than lumbar punctures and brain scans as a diagnostic tool for Alzheimer’s.

UK Biobank

The UK Biobank continues to be used by researchers both in the UK and abroad because of the full sets of data on large numbers of patients over many years. There are few other sources of such data elsewhere in the world. The UK Biobank is a large-scale biomedical database and research resource. It contains de-identified genetic, lifestyle and health information, and biological samples from 500,000 UK participants.

On its website, the UK Biobank states, “It is the most comprehensive and widely-used dataset of its kind and is globally accessible to approved researchers who are undertaking health-related research that is in the public interest, whether they are from academic, commercial, government or charitable settings.”

Thus, clinical laboratory managers and pathologists can expect a continuing stream of published studies that identify biomarkers associated with different health conditions and to see where the data used in these analyses came from the UK’s biobank.

—Stephen Beale

Related Information:

Protein Biomarkers Predict Dementia 15 Years Before Diagnosis, According to New Study

Plasma Proteomic Profiles Predict Future Dementia in Healthy Adults

Proteins May Predict Who Will Get Dementia 10 Years Later, Study Finds

Expert Reaction to Study of Potential Protein Biomarkers for Dementia Risk

Two New p-Tau217 Blood Tests Join a Crowded Field

Plasma p-Tau-217 Assays Work Well, But No Home Run for Diagnosis

Dementia Can Be Predicted More than a Decade Before Diagnosis with These Blood Proteins

Dementia Predicted 10 Years Before Diagnosis

Early Blood Test to Predict Dementia Is Step Closer as Biological Markers Identified

Validating Blood Tests as A Possible Routine Diagnostic Assay of Alzheimer’s Disease

Swiss Research Study into Long COVID Promises New Diagnostic and Therapeutic Possibilities

New biomarker may lead to new clinical laboratory testing and treatments for long COVID

Researchers studying long COVID at the University Hospital of Zurich (UZH) and the Swiss Institute of Bioinformatics (SIB), both in Switzerland, have discovered a protein biomarker in blood that indicates a component of the body’s innate immune system—called the complement system—remains active in some individuals long after the infection has run its course. The scientists are hopeful that further studies may provide clinical laboratories with a definitive test for long COVID, and pharma companies with a path to develop therapeutic drugs to treat it.

Ever since the COVID-19 pandemic began, a subset of the population worldwide continues to experience lingering symptoms even after the acute phase of the illness has passed. Patients with long COVID experience symptoms for weeks, even months after the initial viral infection has subsided. And because these symptoms can resemble other illnesses, long COVID is difficult to diagnose. 

This new biomarker may lead to new clinical laboratory diagnostic blood tests for long COVID, and to a greater understanding of why long COVID affects some patients and not others.

The Swiss scientists published their findings in the journal Science titled, “Persistent Complement Dysregulation with Signs of Thromboinflammation in Active Long COVID.”

“Those long COVID patients used to be like you and me, totally integrated [into] society with a job, social life, and private life,” infectious disease specialist Michelè van Vugt, MD (above), Senior Fellow and Professor at Amsterdam Institute for Global Health and Development (AIGHD), told Medical News Today. “After their COVID infection, for some of them, nothing was left because of their extreme fatigue. And this happened not only in one patient but many more—too many for only [a] psychological cause.” Clinical laboratories continue to perform tests on patients experiencing symptoms of COVID-19 even after the acute illness has passed. (Photo copyright: AIGHD.)

Role of the Complement System

To complete their study, the Swiss scientists monitored 113 patients who were confirmed through a reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) test to have COVID-19. The study also included 39 healthy control patients who were not infected.

The researchers examined 6,596 proteins in 268 blood samples collected when the sick patients were at an acute stage of the virus, and then again six months after the infection. They found that 40 of the patients who were sick with COVID-19 eventually developed symptoms of long COVID. Those 40 patients all had a group of proteins in their blood showing that the complement system of their immune system was still elevated even after recovering from the virus.

“Complement is an arm of the immune system that ‘complements’ the action of the other arms,” Amesh Adalja, MD, Adjunct Assistant Professor at Johns Hopkins Bloomberg School of Public Health, told Prevention, “Activities that it performs range from literally attacking the cell membranes of a pathogen to summoning the cells of other immune systems to the site of infection.”

In addition to helping bodies heal from injury and illness, the complement immune system also activates inflammation in the body—and if the complement system is activated for too long the patient is at risk for autoimmune disease and other inflammatory conditions.

This inflammation may cause microclots in patients. “These can block the blood vessels and lead to damage … That can cause premature cardiac events, dementia, respiratory failure, and renal failure,” infectious disease specialist Thomas Russo, MD, SUNY Distinguished Professor, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, told Prevention.

Brain Fog

To make matters worse for long COVID patients, a recent study published in Nature Neuroscience titled, “Blood-Brain Barrier Disruption and Sustained Systemic Inflammation in Individuals with Long COVID-Associated Cognitive Impairment,” found that nearly 50% of people who experience long COVID also experience a condition called Brain Fog (aka, mental fog or clouding of consciousness.)

Conducted by genetic scientists at Trinity College Dublin and St. James’ Hospital in Dublin, Ireland, the study “analyzed blood samples—specifically, serum and plasma—from 76 patients who were hospitalized with COVID-19 in March or April 2020, along with those from 25 people taken before the pandemic. The researchers discovered that people who said they had brain fog had higher levels of a protein in their blood called S100β [a calcium-binding protein] than people who didn’t have brain fog,” Prevention reported.

“S100β is made by cells in the brain and isn’t normally found in the blood. That suggests that the patients had a breakdown in the blood-brain barrier, which blocks certain substances from getting to the brain and spinal cord, the researchers noted,” Prevention reported.

“The scientists then did MRI scans with dye of 22 people with long COVID (11 of them who reported having brain fog), along with 10 people who recovered from COVID-19. They found that long COVID patients who had brain fog had signs of a leaky blood-brain barrier,” Prevention noted.

“This leakiness likely disrupts the integrity of neurons in the brain by shifting the delicate balance of materials moving into and out of the brain,” Matthew Campbell, PhD, Professor and Head of Genetics at Trinity College Dublin, told Prevention.

Interactions with Other Viruses

According to Medical News Today, the Swiss study results also suggest that long COVID symptoms could appear because of the reactivation of a previous herpesvirus infection. The patients in the study showed increased antibodies against cytomegalovirus, a virus that half of all Americans have contracted by age 40.

The link between long COVID and these other viruses could be key to developing treatment for those suffering with both illnesses. The antiviral treatments used for the herpesvirus could potentially help treat long COVID symptoms as well, according to Medical News Today.

“Millions of people across the planet have long COVID or will develop it,” Thomas Russo MD, Professor and Chief of Infectious Disease at the University at Buffalo in New York, told Prevention. “It’s going to be the next major phase of this pandemic. If we don’t learn to diagnose and manage this, we are going to have many people with complications that impact their lives for the long term.”

Long COVID won’t be going away any time soon, much like the COVID-19 coronavirus. But these two studies may lead to more effective clinical laboratory testing, diagnoses, and treatments for millions of people suffering from the debilitating condition.

—Ashley Croce

Related Information:

New Study Finds Potential Cause of Long COVID Symptoms—Experts Explain

Persistent Complement Dysregulation with Signs of Thromboinflammation in Active Long COVID

CDC: Long COVID or Post-COVID Conditions

Long COVID: Major Findings, Mechanisms and Recommendations

Long COVID Explanation in New Study Possibly Paves Way for Tests and Treatments

Scientists May Have Discovered Reason for Long COVID Brain Fog—Here’s Why It Matters

Blood–Brain Barrier Disruption and Sustained Systemic Inflammation in Individuals with Long COVID-Associated Cognitive Impairment

Could New Clues on How Long COVID Affects Immune System Lead to Treatment?

Scientists at UT Health San Antonio Discover New Biomarker for Diabetic Kidney Disease

Biomarker may lead to clinical laboratory testing that enables clinical pathologists and urologists to diagnose risk for diabetic kidney failure years before it occurs

Clinical laboratories working with nephrologists and urologists to diagnose patients experiencing urinary system difficulties know that albumin (excessive protein found in the urine) is a common biomarker used in clinical laboratory testing for kidney disease. But patients with diabetes generally have low protein in their urine due to that disease. Thus, it is difficult to diagnose early stage kidney failure in diabetic patients.

But now, researchers at the University of Texas Health Science Center at San Antonio (UT Health San Antonio) have discovered a biomarker called adenine (also found in the urine) which, they say, offers the ability to diagnose diabetic patients at risk of kidney failure significantly earlier than other biomarkers.

A UT Health San Antonio news release states, “Urine levels of adenine, a metabolite produced in the kidney, are predictive and a causative biomarker of looming progressive kidney failure in patients with diabetes, a finding that could lead to earlier diagnosis and intervention.”

The study’s senior author Kumar Sharma, MD, professor and Chief of Nephrology at UT Health San Antonio, said, “The finding paves the way for clinic testing to determine—five to 10 years before kidney failure—that a patient is at risk.”

The UT Health scientists published their research in the Journal of Clinical Investigation (JCI) titled, “Endogenous Adenine Mediates Kidney Injury in Diabetic Models and Predicts Diabetic Kidney Disease in Patients.”

“The study is remarkable as it could pave the way to precision medicine for diabetic kidney disease at an early stage of the disease,” said study lead Kumar Sharma, MD (above), professor and Chief of Nephrology at UT Health San Antonio, in a news release. This would be a boon to clinical laboratories and pathology groups that work with urologists to diagnose and treat diabetic patients who are at-risk for kidney failure. (Photo copyright: UT Health San Antonio.)

Completing the UT Health Study

Sharma and his team worked for five years to discover that the adenine molecule was damaging kidney tissue, News4SA reported. The research required the team to develop new methods for viewing small molecules known as metabolites.

“UT Health San Antonio is one of few centers in the US perfecting a technique called spatial metabolomics on kidney biopsies from human patients,” the news release notes. The kidney biopsies were obtained through the Kidney Precision Medicine Project (KPMP) and were gathered from various US academic centers.

“It’s a very difficult technique, and it took us several years to develop a method where we combine high resolution of the geography of the kidney with mass spectrometry analysis to look at the metabolites,” Sharma said.

Testing by the UT Health team unearthed “endogenous adenine around scarred blood vessels in the kidney and around tubular-shaped kidney cells that were being destroyed. Endogenous substances are those that naturally occur in the body,” the news release notes.

Findings Could Affect Diabetic Care

UT Health San Diego’s study findings could allow for early intervention and change the way diabetes care is managed, Sharma said.

“The study results are significant because until now, the most important marker for kidney disease has been protein (or albumin) in the urine. Up to half of diabetes patients who develop kidney failure never have much protein in their urine. As 90% of patients with diabetes (more than 37 million patients in the US) remain at increased risk despite low levels of albumin in their urine, this study has widespread consequences. It is the first study to identify these patients at an early stage by measuring this new causative marker in the urine,” the UT Health news release states.

“We’re hoping that by identifying patients early in their course, and with new therapies targeting adenine and kidney scarring, we can block kidney disease or extend the life of the kidney much longer,” Sharma said.

Getting Ahead of Kidney Disease

Though many patients recognize their risk for kidney disease, those who do not have protein in their urine may not take the risk seriously enough, Sharma noted.

“They could be feeling a false sense of security that there is no kidney disease occurring in their body, but in fact, in many cases it is progressing, and they often don’t find out until the kidney disease is pretty far advanced. And at that time, it is much harder to protect the kidneys and prevent dialysis,” he said in the new release.

“Once a patient needs dialysis, he or she must have a fistula or catheter placed and go on a dialysis machine three times a week, four hours at a time to clean the blood,” the news release states.

“The death rate is very high, especially in patients with diabetes,” Sharma added. “There is about 40% mortality within five years in patients with diabetes and kidney failure.”

Though measuring adenine in urine is a challenge, Sharma and his team developed a method that can be performed at UT Health San Antonio on at-risk patients with a doctor’s order. The test results go back to the patient’s doctor.

“The test is being approved for clinical use and right now it is an experimental test, but we expect it to be available for all patients in the near future.” Sharma told News4SA.

“What we’re hoping is that by identifying patients early in their course, and with new therapies targeting adenine and kidney scarring, we can block kidney disease or extend the life of the kidney much longer,” Sharma said in the news release.

And so, thanks to the UT Health researchers, pathologists and clinical laboratories may soon see a new diagnostic test biomarker that will help urologists identify diabetic patients at-risk for kidney failure years earlier than previously possible.

—Kristin Althea O’Connor

Related Information:

Endogenous Adenine Mediates Kidney Injury in Diabetic Models and Predicts Diabetic Kidney Disease in Patients

Metabolite in Urine Predicts Diabetic Kidney Failure 5-10 Years Early; Oral Therapeutic Drug Shows Promise in Mice

Revolutionizing Diabetes Care: UT Health San Antonio’s Breakthrough in Predicting Kidney Failure

UT Health San Antonio Discovers Molecule Predicting Kidney Failure in Diabetics

AXIM Biotechnologies Develops Diagnostic Test for Parkinson’s Disease That Uses Tear Drop Specimens and Returns Results in Less than 10 Minutes at the Point of Care

New non-invasive test could replace traditional painful spinal taps and clinical laboratory fluid analysis for diagnosis of Parkinson’s disease

Scientists at AXIM Biotechnologies of San Diego have added another specimen that can be collected non-invasively for rapid, point-of-care clinical laboratory testing. This time it is tears, and the diagnostic test is for Parkinson’s disease (PD).

The new assay measures abnormal alpha-synuclein (a-synuclein), a protein that is a biomarker for Parkinson’s, according to an AXIM news release which also said the test is the first rapid test for PD.

“The revolutionary nature of AXIM’s new test is that it is non-invasive, inexpensive, and it can be performed at a point of care. It does not require a lumbar puncture, freezing, or sending samples to a lab. AXIM’s assay uses a tiny tear drop versus a spinal tap to collect the fluid sample and the test can be run at a doctor’s office with quantitative results delivered from a reader in less than 10 minutes,” the news release notes.

A recent study conducted by the Michael J. Fox Foundation for Parkinson’s Research published in The Lancet Neurology titled, “Assessment of Heterogeneity among Participants in the Parkinson’s Progression Markers Initiative Cohort Using Α-Synuclein Seed Amplification: A Cross-Sectional Study,” found that “the presence of abnormal alpha-synuclein was detected in an astonishing 93% of people with Parkinson’s who participated in the study,” the news release noted.

“Furthermore, emerging evidence shows that a-synuclein assays have the potential to differentiate people with PD from healthy controls, enabling the potential for early identification of at-risk groups,” the news release continues. “These findings suggest a crucial role for a-synuclein in therapeutic development, both in identifying pathologically defined subgroups of people with Parkinson’s disease and establishing biomarker-defined at-risk cohorts.”

This is just the latest example of a disease biomarker that can be collected noninvasively. Other such biomarkers Dark Daily has covered include:

“With this new assay, AXIM has immediately become a stakeholder in the Parkinson’s disease community, and through this breakthrough, we are making possible new paradigms for better clinical care, including earlier screening and diagnosis, targeted treatments, and faster, cheaper drug development,” said John Huemoeller, CEO, AXIM (above), in a news release. Patients benefit from non-invasive clinical laboratory testing. (Photo copyright: AXIM Biotechnologies.)

Fast POC Test versus Schirmer Strip

AXIM said it moved forward with its novel a-synuclein test propelled by earlier tear-related research that found “a-synuclein in its aggregated form can be detected in tears,” Inside Precision Medicine reported.

But that research used what AXIM called the “outdated” Schirmer Strip method to collect tears. The technique involves freezing tear samples at -80 degrees Celsius (-112 Fahrenheit), then sending them to a clinical laboratory for centrifugation for 30 minutes; quantifying tear protein content with a bicinchoninic acid assay, and detecting a-synuclein using a plate reader, AXIM explained.

Alternatively, AXIM says its new test may be performed in doctors’ offices and offers “quantitative results delivered from a reader in less than 10 minutes.”

“Our proven expertise in developing tear-based diagnostic tests has led to the development of this test in record speed, and I’m extremely proud of our scientific team for their ability to expand our science to focus on such an important focus area as Parkinson’s,” said John Huemoeller, CEO, AXIM in the news release.

“This is just the beginning for AXIM in this arena,” he added. “But I am convinced when pharmaceutical companies, foundations, and neurologists see how our solution can better help diagnose Parkinson’s disease in such an expedited and affordable way, we will be at the forefront of PD research, enabling both researchers and clinicians a brand-new tool in the fight against PD.”

AXIM acquired Advanced Tear Diagnostics, Birmingham, Ala., in 2021. As part of this acquisition, it obtained two US Food and Drug Administration-cleared tests for dry eye syndrome, Fierce Biotech reported.

One of those tests was “a lateral flow diagnostic for point-of-care use that measures the level of lactoferrin proteins in tear fluid, which work to protect the surface of the eye. … Axim said that low lactoferrin levels have also been linked to Parkinson’s disease and that the assay can be used alongside its alpha-synuclein test,” Fierce Biotech noted.

Why Tears for PD Test?

Mark Lew, MD, Professor of Clinical Neurology, University of Southern California Keck School of Medicine, published earlier studies about using tear samples as biomarkers for Parkinson’s disease.

“It made sense to try and look at the proteinaceous [consisting of or containing protein] constituents of tear fluid,” Lew told Neurology Live. “Tear fluid is easy to collect. It’s noninvasive, inexpensive. It’s not like when you do a lumbar puncture, which is a much more involved ordeal. There’s risk of contamination with blood (saliva is dirty) issues with blood and collection. [Tear fluid analysis] is much safer and less expensive to do.”

In Biomarkers in Medicine, Lew et al noted why tears make good biomarkers for Parkinson’s disease, including “the interconnections between the ocular [eye] surface system and neurons affected in Parkinson’s disease.”

The researchers also highlighted “recent data on the identification of tear biomarkers including oligomeric α-synuclein, associated with neuronal degeneration in PD, in tears of PD patients” and discussed “possible sources for its release into tears.”

Future Clinical Laboratory Testing for Parkinson’s

Parkinson’s disease is the second most common neurodegenerative disorder after Alzheimer’s. It affects nearly one million people in the US. About 1.2 million people may have it by 2030, according to the Parkinson’s Foundation.

Thus, an accurate, inexpensive, non-invasive diagnostic test that can be performed at the point of care, and which returns clinical laboratory test results in less than 10 minutes, will be a boon to physicians who treat PD patients worldwide.

Clinical laboratory managers and pathologists may want to follow AXIM’s future research to see when the diagnostic test may become available for clinical use.

—Donna Marie Pocius

Related Information:

Parkinson’s Disease Biomarker Found

AXIM Biotechnologies Develops First Non-Invasive, Rapid, Point-of-Care, Diagnostic Test for Parkinson’s Disease

Assessment of Heterogeneity Among Participants in the Parkinson’s Progression Markers Initiative Cohort Using A-Synuclein Seed Amplification: a Cross-sectional Study

Tear Drop Test is First Rapid, Point-of-Care Diagnostic for Parkinson’s Disease

New Test Aims to Spot Signs of Parkinson’s Disease within a Tear Drop

Motivations for Using Tears to Confirm Parkinson’s Disease Diagnosis

Tears—More to Them than Meets the Eye: Why Tears are a Good Source of Biomarkers in Parkinson’s Disease

;