News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

McMaster University Researchers Develop Bioinformatics ‘Shortcut’ That Speeds Detection and Identification of Pathogens, including Sepsis, SARS-CoV-2, Others

Molecular probes designed to spot minute amounts of pathogens in biological samples may aid clinical laboratories’ speed-to-answer

Driven to find a better way to isolate minute samples of pathogens from among high-volumes of other biological organisms, researchers at Canada’s McMaster University in Hamilton, Ontario, have unveiled a bioinformatics algorithm which they claim shortens time-to-answer and speeds diagnosis of deadly diseases.

Two disease pathogens the researchers specifically targeted in their study are responsible for sepsis and SARS-CoV-2, the coronavirus causing COVID-19. Clinical laboratories would welcome a technology which both shortens time-to-answer and improves diagnostic accuracy, particularly for pathogens such as sepsis and SARS-CoV-2.

Their design of molecular probes that target the genomic sequences of specific pathogens can enable diagnosticians and clinical laboratories to spot extremely small amounts of viral and bacterial pathogens in patients’ biological samples, as well as in the environment and wildlife.

“There are thousands of bacterial pathogens and being able to determine which one is present in a patient’s blood sample could lead to the correct treatment faster when time is very important,” Zachery Dickson, a lead author of the study, told Brighter World. Dickson is a bioinformatics PhD candidate in the Department of Biology at McMaster University. “The probe makes identification much faster, meaning we could potentially save people who might otherwise die,” he added.

Sepsis is a life-threatening response to infection that leads to organ failure, tissue damage, and death in hospitals worldwide. According to Sepsis Alliance, about 30% of people diagnosed with severe sepsis will die without quick and proper treatment. Thus, a “shortcut” to identifying sepsis in its early stages may well save many lives, the McMaster researchers noted.

And COVID-19 has killed millions. Such a tool that identifies sepsis and SARS-CoV-2 in minute biological samples would be a boon to hospital medical laboratories worldwide.

Hendrik Poinar, PhD

“We currently need faster, cheaper, and more succinct ways to detect pathogens in human and environmental samples that democratize the hunt, and this pipeline does exactly that,” Hendrik Poinar, PhD (above), McMaster Professor of Anthropology and a lead author of the study, told Brighter World. Poinar is Director of the McMaster University Ancient DNA Center. Hospital medical laboratories could help save many lives if sepsis and COVID-19 could be detected earlier. (Graphic copyright: McMaster University.)

Is Bioinformatics ‘Shortcut’ Faster than PCR Testing?

The National Human Genome Research Institute defines a “probe” in genetics as a “single-stranded sequence of DNA or RNA used to search for its complementary sequences in a sample genome.”

The McMaster scientists call their unique probe design process, HUBDesign, or Hierarchical Unique Bait Design. “HUB is a bioinformatics pipeline that designs probes for targeted DNA capture,” according to their paper published in the journal Cell Reports Methods, titled, “Probe Design for Simultaneous, Targeted Capture of Diverse Metagenomic Targets.”

The researchers say their probes enable a shortcut to detection—even in an infection’s early stages—by “targeting, isolating, and identifying the DNA sequences specifically and simultaneously.”

The probes’ design makes possible simultaneous targeted capture of diverse metagenomics targets, Biocompare explained.

But is it faster than PCR (polymerase chain reaction) testing?

The McMaster scientists were motivated by the “challenges of low signal, high background, and uncertain targets that plague many metagenomic sequencing efforts,” they noted in their paper.

They pointed to challenges posed by PCR testing, a popular technique used for detection of sepsis pathogens as well as, more recently, for SARS-CoV-2, the coronavirus causing COVID-19.

“The (PCR) technique relies on primers that bind to nucleic acid sequences specific to an organism or group of organisms. Although capable of sensitive, rapid detection and quantification of a particular target, PCR is limited when multiple loci are targeted by primers,” the researchers wrote in Cell Reports Methods.

According to LabMedica, “A wide array of metagenomic study efforts are hampered by the same challenge: low concentrations of targets of interest combined with overwhelming amounts of background signal. Although PCR or naive DNA capture can be used when there are a small number of organisms of interest, design challenges become untenable for large numbers of targets.”

Detecting Pathogens Faster, Cheaper, and More Accurately

As part of their study, researchers tested two probe sets:

  • one to target bacterial pathogens linked to sepsis, and
  • another to detect coronaviruses including SARS-CoV-2.

They were successful in using the probes to capture a variety of pathogens linked to sepsis and SARS-CoV-2.

“We validated HUBDesign by generating probe sets targeting the breadth of coronavirus diversity, as well as a suite of bacterial pathogens often underlying sepsis. In separate experiments demonstrating significant, simultaneous enrichment, we captured SARS-CoV-2 and HCoV-NL63 [Human coronavirus NL 63] in a human RNA background and seven bacterial strains in human blood. HUBDesign has broad applicability wherever there are multiple organisms of interest,” the researchers wrote in Cell Reports Methods.

The findings also have implications to the environment and wildlife, the researchers noted.

Of course, more research is needed to validate the tool’s usefulness in medical diagnostics. The McMaster University researchers intend to improve HUBDesign’s efficiency but note that probes cannot be designed for unknown targets.

Nevertheless, the advanced application of novel technologies to diagnose of sepsis, which causes 250,000 deaths in the US each year, according to the federal Centers for Disease Control and Prevention, is a positive development worth watching.

The McMaster scientists’ discoveries—confirmed by future research and clinical studies—could go a long way toward ending the dire effects of sepsis as well as COVID-19. That would be a welcome development, particularly for hospital-based laboratories.

—Donna Marie Pocius

Related Information:

DNA Researchers Develop Critical Shortcut to Detect and Identify Known and Emerging Pathogens

Probe Design for Simultaneous, Targeted Capture of Diverse Metagenomic Targets

New Tool Designs Probes for Targeted DNA Capture

Novel Tool Developed to Detect and Identify Pathogens

Hospitals Worldwide are Deploying Artificial Intelligence and Predictive Analytics Systems for Early Detection of Sepsis in a Trend That Could Help Clinical Laboratories Microbiologists

Penn Medicine Informatics Taps Medical Laboratory Data and Three Million Patient Records Over 10 Years to Evaluate Patients’ Sepsis Risk and Head Off Heart Failure

Saarland University Researchers Use Blood Samples from Zoo Animals to Help Scientists Find Biomarkers That Speed Diagnoses in Humans

Using animal blood, the researchers hope to improve the accuracy of AI driven diagnostic technology

What does a cheetah, a tortoise, and a Humboldt penguin have in common? They are zoo animals helping scientists at Saarland University in Saarbrücken, Germany, find biomarkers that can help computer-assisted diagnoses of diseases in humans at early stages. And they are not the only animals lending a paw or claw.

In their initial research, the scientists used blood samples that had been collected during routine examinations of 21 zoo animals between 2016 and 2018, said a news release. The team of bioinformatics and human genetics experts worked with German zoos Saarbrücken and Neunkircher for the study. The project progresses, and thus far, they’ve studied the blood of 40 zoo animals, the release states.

This research work may eventually add useful biomarkers and assays that clinical laboratories can use to support physicians as they diagnose patients, select appropriate therapies, and monitor the progress of their patients. As medical laboratory scientists know, for many decades, the animal kingdom has been the source of useful insights and biological materials that have been incorporated into laboratory assays.

“Measuring the molecular blood profiles of animals has never been done before this way,” said Andreas Keller, PhD, Saarland University Bioinformatics Professor and Chair for Clinical Bioinformatics, in the news release. The Saarland researchers published their findings in Nucleic Acids Research, an Oxford Academic journal.

“Studies on sncRNAs [small non-coding RNAs] are often largely based on homology-based information, relying on genomic sequence similarity and excluding actual expression data. To obtain information on sncRNA expression (including miRNAs, snoRNAs, YRNAs and tRNAs), we performed low-input-volume next-generation sequencing of 500 pg of RNA from 21 animals at two German zoological gardens,” the article states.

Can Animals Improve the Accuracy of AI to Detect Disease in Humans?

In their research, Saarland scientists rely on advanced next-generation sequencing (NGS) technology and artificial intelligence (AI) to sequence RNA and microRNA. Their goal is to better understand the human genome and cause of diseases.

However, the researchers perceived an inability for AI and machine learning to discern real biomarker patterns from those that just seemed to fit.

“The machine learning methods recognize the typical patterns, for example for a lung tumor or Alzheimer’s disease. However, it is difficult for artificial intelligence to learn which biomarker patterns are real and which only seem to fit the respective clinical picture. This is where the blood samples of the animals come into play,” Keller states in the news release.

“If a biomarker is evolutionarily conserved, i.e. also occurs in other species in similar form and function, it is much more likely that it is a resilient biomarker,” Keller explained. “The new findings are now being incorporated into our computer models and will help us to identify the correct biomarkers even more precisely in the future.”

Andreas Keller, PhD (left), and zoo director Richard Francke (right), hold a pair of radiated tortoises that participated in the Saarland University study. (Photo copyright: Oliver Dietze/Saarland University.)

Microsampling Aids Blood Collection at Zoos

The researchers used a Neoteryx Mitra blood collection kit to secure samples from the animals and volunteers. Dark Daily previously reported on this microsampling technology in, “Innovations in Microsampling Blood Technology Mean More Patients Can Have Blood Tests at Home, and Clinical Laboratories May Advance Toward Precision Medicine Goals,” November 28, 2018.

“Because blood can be obtained in a standardized manner and miRNA expression patterns are technically very stable, it is easy to accurately compare expression between different animal species. In particular, dried blood spots or microsampling devices appear to be well suited as containers for miRNAs,” the researchers wrote in Nucleic Acids Research.

Animal species that participated in the study include:

Additionally, human volunteers contributed blood specimens for a total of 19 species studied. The scientists reported success in capturing data from all of the species. They are integrating the information into their computer models and have developed a public database of their findings for future research.

“With our study, we provide a large collection of small RNA NGS expression data of species that have not been analyzed before in great detail. We created a comprehensive publicly available online resource for researchers in the field to facilitate the assessment of evolutionarily conserved small RNA sequences,” the researchers wrote in their paper.         

Clinical Laboratory Research and Zoos: A Future Partnership?

This novel involvement of zoo animals in research aimed at improving the ability of AI driven diagnostics to isolate and identify human disease is notable and worth watching. It is obviously pioneering work and needs much additional research. At the same time, these findings give evidence that there is useful information to be extracted from a wide range of unlikely sources—in this case, zoo animals.

Also, the use of artificial intelligence to search for useful patterns in the data is a notable part of what these researchers discovered. It is also notable that this research is focused on sequencing DNA and RNA of the animals involved with the goal of identifying sequences that are common across several species, thus demonstrating the common, important functions they serve.

In coming years, those clinical laboratories doing genetic testing in support of patient care may be incorporating some of this research group’s findings into their interpretation of certain gene sequences.

—Donna Marie Pocius

Related Information:

Blood Samples from the Zoo Help Predict Diseases in Humans

The sncRNA Zoo: A Repository for Circulating Small Noncoding RNAs in Animals

ASRA Public Database of Small Non-Coding RNAs

Innovations in Microsampling Blood Technology Mean More Patients Can Have Blood Tests at Home and Clinical Laboratories May Advance Toward Precision Medicine Goals

Study at University of Chicago Uses Supercomputer to Shorten Time Required to Analyze Whole Human Genome Sequences; May Help Pathologists Deliver Faster Diagnoses

Achievement at University of Chicago may help clinical laboratories analyze large quantities of genomic data much faster than ever before, thus shortening the time required to produce a diagnostic result

It’s a breakthrough in the time required to analyze data from whole human genome sequencing. Researchers at the University of Chicago have successfully demonstrated that genome analysis can be radically accelerated.

This could be a big deal for pathologists and clinical laboratory scientists. That’s because a faster time-to-answer from gene sequencing would increase its diagnostic and therapeutic value to clinicians.

Faster and more accurate analysis of genomic data holds the promise of advances in patient management and greater understanding of the genetic causes of risk and disease. This could mean expanded opportunities for pathologists to engage with clinicians in the use of genomic data to inform diagnosis, choice of treatment, and disease management. (more…)

Whole-Genome Sequencing, Aided by Bioinformatics Analytical Software, Offers Quick, Accurate Test for Diagnosing Diseases Caused by Single-Gene Mutations

A new approach to genetic testing of critically ill children, developed by researchers at Children’s Mercy Hospital, can be a road map other medical laboratories can follow  

In Kansas City, a medical team at Children’s Mercy Hospital has demonstrated that rapid whole human genome sequencing, when combined with interpretative software, can return clinically actionable answers quickly enough to be of value to physicians who are diagnosing patients showing symptoms of genetic conditions.

As many pathologists and clinical laboratory managers know, childrens’ hospitals across the nation are often at the vanguard of using molecular diagnostics and genetic tests to guide diagnosis and treatment of pediatric patients. Having the capability to make fast and accurate diagnoses of genetic conditions gives physicians at these institutions the ability to significantly improve the outcomes of their patients.

A report published by Medpagetoday.com reported the findings of researchers at Children’s Mercy Hospital. (more…)

New York Genome Center Opens New Gene Sequencing and Bioinformatics Facility in Downtown Manhattan

The Center brings together scientists from around the city to translate promising research into medical innovations to treat, prevent and manage disease

Gene sequencing is going big time in the Big Apple. Last month the New York Genome Center (NYGC) moved into a state-of-the-art, 170,000-square-foot genome sequencing and biometrics research building. New York City is putting down its marker to claim a leading role in advancing genetic knowledge.

What makes this development notable for the clinical laboratory industry and the anatomic pathology profession is the fact that cities across the nation are investing substantial amounts of capital to create their own genetic and biotech research and development hubs. Their common objective is to bring together all the expertise, financial support, and business acumen needed to create a job-creating critical mass in the fields of biotech and genetic medicine. (more…)

;