News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

Sign In

New Washington University Medicine Blood Test Can Diagnose and Track Progression of Alzheimer’s Disease with 92% Accuracy

Findings could lead to clinical laboratory test that can both track the disease’s progress and differentiate it from other forms of dementia

Another research study is underway with hopes of developing a new clinical laboratory blood test to aid in the diagnoses of Alzheimer’s disease and help physicians determine the best course of treatment.

Researchers at the Washington University School of Medicine (WashU Medicine) in St. Louis and Lund University in Sweden have developed a test that focuses on the presence of a protein called MTBR-tau243, a potential biomarker for Alzheimer’s. This protein is correlated to the toxic accumulation of tau aggregates in the brain and the severity of the disease, according to a WashU new release.

Cognitive tests and brain imaging are also used to diagnose the condition. However, existing tests cannot establish how far the illness has progressed. Alzheimer’s therapies are most effective during early stages, so determining the disease’s progression could provide insights doctors need to devise the most effective treatment protocols.

Washington University’s new blood test that identifies MTBR-tau243 protein could lead to new biomarkers as well as identifying how far the disease has progressed.

“This blood test clearly identifies Alzheimer’s tau tangles [aka, neurofibrillary tangles], which is our best biomarker measure of Alzheimer’s symptoms and dementia,” said co-senior author Randall J. Bateman, MD, professor of neurology at WashU Medicine in the WashU news release.

The researchers published their findings in the journal Nature Medicine titled, “Plasma MTBR-tau243 Biomarker Identifies Tau Tangle Pathology in Alzheimer’s Disease.”

“In clinical practice right now, we don’t have easy or accessible measures of Alzheimer’s tangles and dementia, and so a tangle blood test like this can provide a much better indication if the symptoms are due to Alzheimer’s and may also help doctors decide which treatments are best for their patients,” said co-senior author Randall J. Bateman, MD, professor of neurology at WashU Medicine in a news release. (Photo copyright: Washington University.)

Distinguishing between Alzheimer’s and Other Forms of Dementia

The WashU scientists tested the study participants in three main stages of Alzheimer’s disease:

  • Pre-symptomatic.
  • Early stage with mild cognitive impairment.
  • Late symptomatic where patients have been diagnosed with dementia.

The study included 108 volunteers from WashU Medicine’s Charles F. and Joanne Knight Alzheimer Disease Research Center and a subset of 55 people from the Swedish BioFINDER-2 study, which aims to discover key mechanisms in neurodegenerative disorders. The scientists validated their results in an independent dataset involving 739 other people in the BioFINDER-2 database. The patient information used for the study represented patients from all stages of the disease.

Alzheimer’s disease involves an accumulation of amyloid into plaques in the brain, which turn into tangles of tau proteins. When these tau tangles become detectable, cognitive symptoms begin to occur and exacerbate as the tangles spread. WashU’s new blood test can detect MTBR-tau243 levels in the brain with 92% accuracy. The researchers also found that MTBR-tau243 levels were significantly higher for patients in the mild cognitive stage of the disease and up to 200 times higher for patients in the late symptomatic stage.

“MTBR-tau243 is a chipped (off) piece of the protein in Alzheimer’s tau tangles,” Bateman told Medical News Today. “The blood test measures this piece of tau tangles in the blood as a measure of how many tangles are in the brain.”

The researchers also found that MTBR-tau243 levels were normal in patients with cognitive symptoms attributed to diseases other than Alzheimer’s, suggesting that the test can distinguish Alzheimer’s dementia from other forms of dementia.

“We’re about to enter the era of personalized medicine for Alzheimer’s disease,” said Kanta Horie, PhD, voluntary research associate professor of neurology at WashU Medicine, co-first and co-corresponding author of the study, in the WashU news release.

More Studies Needed

According to the Centers for Disease Control and Prevention (CDC), Alzheimer’s is the seventh leading causes of death in the US. It accounted for more than 120,000 deaths in 2022, the most recent year for available data. With the ebbing of COVID-19, which was ranked number four in 2022, Alzheimer’s is assumed to be higher in ranking for more recent years.

Washington University’s new blood test for Alzheimer’s may one day enable earlier detection of the disease, earlier intervention, and slowing of its advancement. However, more research and trials are needed into the theory behind this study.

“The initial study needs to be replicated in larger and more diverse populations to confirm its accuracy and reliability across different demographics, ethnicities, and stages of the disease,” Manisha Parulekar, MD, director of the Division of Geriatrics at Hackensack University Medical Center, told Medical News Today. “This includes testing individuals with other neurological conditions to ensure specificity. Clear and standardized protocols for blood collection, processing, and analysis must be established to ensure consistent and reproducible results across different laboratories and healthcare settings.”

—JP Schlingman

New Research Suggests Clinical Laboratory Blood Tests Could Fill A Void in Alzheimer’s Disease Diagnoses

Studies presented at the Alzheimer’s Association International Conference point to the p-tau217 protein as an especially useful biomarker

Researchers disclosed a potentially useful biomarker for Alzheimer’s Disease at a major conference this summer. The good news for clinical laboratories is that the biomarker is found in blood. If further research confirms these early findings, medical laboratories could one day have a diagnostic test for this condition.

That possibility emerged from the Alzheimer’s Association International Conference (AAIC), which was held online July 27-31. Researchers presented findings from multiple studies that suggested blood/plasma levels of a protein known as phospho-tau217 (p-tau217) can indicate brain anomalies associated with Alzheimer’s.“Changes in brain proteins amyloid and tau, and their formation into clumps known as plaques and tangles, respectively, are defining physical features of Alzheimer’s disease in the brain,” states an AAIC press release. “Buildup of tau tangles is thought to correlate closely with cognitive decline. In these newly reported results, blood/plasma levels of p-tau217, one of the forms of tau found in tangles, also seem to correlate closely with buildup of amyloid.”

At present, “there is no single diagnostic test that can determine if a person has Alzheimer’s disease,” the association states on its website. Clinicians will typically review a patient’s medical history and conduct tests to evaluate memory and other everyday thinking skills. That may help determine that an individual has dementia, but not necessarily that Alzheimer’s is the cause.

“Currently, the brain changes that occur before Alzheimer’s dementia symptoms appear can only be reliably assessed by positron-emission tomography (PET) scans, and from measuring amyloid and tau proteins in [cerebrospinal] fluid (CSF),” the association states. “These methods are expensive and invasive. And, too often, they are unavailable because they are not covered by insurance or difficult to access, or both.”

In the AAIC press release, Alzheimer’s Association Chief Science Officer Maria C. Carrillo, PhD, said that a clinical laboratory blood test “would fill an urgent need for simple, inexpensive, non-invasive and easily available diagnostic tools for Alzheimer’s.

“New testing technologies could also support drug development in many ways,” she added. “For example, by helping identify the right people for clinical trials, and by tracking the impact of therapies being tested. The possibility of early detection and being able to intervene with a treatment before significant damage to the brain from Alzheimer’s disease would be game changing for individuals, families, and our healthcare system.”

However, she cautioned, “these are early results, and we do not yet know how long it will be until these tests are available for clinical use. They need to be tested in long-term, large-scale studies, such as Alzheimer’s clinical trials.”

Eli Lilly Clinical Laboratory Alzheimer’s Test

In one study presented at the conference, titled, “Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders,” researchers evaluated an experimental p-tau217 medical laboratory test developed by Eli Lilly. They published their research in JAMA Network.

The study, led by Oskar Hansson, MD, of Lund University in Sweden, included 1,402 participants. About half of these were enrolled in BioFINDER-2, an ongoing dementia study in Sweden. In this group, researchers were most interested in the test’s ability to distinguish Alzheimer’s from other neurodegenerative disorders that cause dementia.

Diagnostic accuracy was between 89% and 98%, the researchers reported, which was similar to the performance of PET imaging and CSF tests. P-tau217 was more accurate than magnetic resonance imaging (MRI) as well as other biomarkers, such as p-tau181.

Oskar-Hansson-PhD-Lund-University-400w@72ppi
“Today the majority of individuals with Alzheimer’s disease around the world do not get a timely diagnosis, which results in suboptimal symptomatic treatment and care,” Oskar Hansson, MD, said in an Eli Lilly news release. “With rising prevalence of Alzheimer’s disease, more patients will be evaluated in primary care and other clinics where CSF and PET biomarkers are not available. Blood-based biomarkers, like plasma p-tau217, together with digital tools for checking memory performance, such as smartphone-based apps, can considerably improve the diagnostic work-up of Alzheimer’s disease patients in such clinics.” (Photo copyright: Alzheimer’s Fund.)

Another cohort consisted of 81 participants in the Brain and Body Donation Program at Banner Sun Health Research Institute in Sun City, Ariz. In this program, elderly volunteers submit to periodic clinical assessments and agree to donate their organs and tissue for study after they die.

Here, the researchers’ primary goal was to determine the test’s ability to distinguish between individuals with and without Alzheimer’s. Researchers ran the p-tau217 test on plasma samples collected within 2.9 years of death and compared the results to postmortem examinations of the brain tissue. Accuracy was 89% in individuals with amyloid plaques and tangles, and 98% in individuals with plaques and more extensive tangles.

The third cohort consisted of 622 members of a large extended family in Colombia whose members share a genetic mutation that makes them susceptible to early-onset Alzheimer’s, The New York Times reported. Among the members, 365 were carriers of the mutation. In this group, levels of plasma p-tau217 increased by age, and “a significant difference from noncarriers was seen at age 24.9 years,” the researchers wrote in Jama Network. That’s about 20 years before the median age when mild cognitive impairment typically begins to appear in carriers.

Other Alzheimer Biomarker Studies Presented at AAIC

Suzanne Schindler, MD, PhD, a neurologist and instructor in the Department of Neurology at the Washington University School of Medicine (WUSM) in St. Louis, presented results of an Alzheimer’s Disease (AD) study that used mass spectrometry to analyze amyloid and p-tau variants in blood samples collected from participants. The researchers compared these with CSF and PET results and found that some of the of p-tau isoforms, especially p-tau217, had a strong concordance.

“These findings indicate that blood plasma Aβ and p-tau measures are highly precise biomarkers of brain amyloidosis, tauopathy, and can identify stages of clinical and preclinical AD,” stated an AAIC press release on the studies.

The WUSM researches launched the effort to develop and validate Alzheimer’s blood biomarkers called the Study to Evaluate Amyloid in Blood and Imaging Related to Dementia (SEABIRD) in April 2019. It runs through August 2023 and will seek to enroll more than 1,100 participants in the St. Louis area.

Another study presented at the conference compared the performance of p-tau217 and p-tau181 in distinguishing between Alzheimer’s and Frontotemporal Lobar Degeneration (FTLD), another condition that causes dementia. Study author Elisabeth Thijssen, MSc, of the UC San Francisco Memory and Aging Center reported that both biomarkers could be useful in differential diagnosis, but that p-tau217 was “potentially superior” for predicting a tau positive PET scan result.

For decades, physicians have wanted a diagnostic test for Alzheimer’s Disease that could identify this condition early in its development. This would allow the patient and the family to make important decisions before the onset of severe symptoms. Such a clinical laboratory test would be ordered frequently and thus would be a new source of revenue for medical laboratories.

—Stephen Beale

Related Information:

How is Alzheimer’s Disease Diagnosed?

Alzheimer’s Diagnosis and Treatment

Diagnosing Alzheimer’s: How Alzheimer’s is Diagnosed

New Alzheimer’s Disease Blood Test Could Enable Early Diagnosis and Advance Understanding of How Disease Impacts Those Living with It

Lilly’s p-tau217 Blood Test Shows High Accuracy in Diagnosis of Alzheimer’s Disease in Data Published in JAMA

P-Tau217 May Detect Alzheimer Disease, Brain Amyloidosis, Tauopathy

New Blood Test Shows Great Promise in The Diagnosis of Alzheimer’s Disease

‘Amazing, Isn’t It?’ Long-Sought Blood Test for Alzheimer’s in Reach

Scientists Get Closer to Blood Test for Alzheimer’s Disease

Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders

;