News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Researchers at the Stanford University School of Medicine Develop Cutting-Edge Test to Identify Whether an Infection is Bacterial or Viral

Early results are promising and this technology could lead to a clinical laboratory test that would give microbiologists and pathologists a new tool for helping diagnose infections

Infectious disease physicians and clinical laboratory scientists will be interested to learn that researchers at the Stanford University School of Medicine recently developed a new blood test that can identify whether the source of an infection is bacterial or viral.

These findings were published in Science Translational Medicine in July. The paper was authored by Stanford staff members Timothy Sweeney, MD, PhD, and Purvesh Khatri, PhD, Assistant Professor (Research) of Medicine (Biomedical Informatics Research-ITI Institute) and of Biomedical Data Science. Hector Wong, MD, of the University of Cincinnati was the third co-author of the study.

These findings are timely because, starting on January 1, 2017, hospitals and health systems will need to implement more rigorous antimicrobial stewardship programs to comply with new requirements of the Centers for Medicare & Medicaid Services (CMS) and The Joint Commission (TJC). A clinical laboratory test that makes it easier to determine whether the cause of an infection is bacterial or viral would be a welcome tool for physicians, pharmacists, pathologists, and microbiologists involved in a hospital’s infection control program. (more…)

New Tool for Fighting Antibiotic-Resistant Bacteria: Meet Bacteriophage

Microbiologists and hospital infection control teams are intensifying efforts to identify and control infections of antibiotic-resistant strains of bacteria. Now comes news of a new tool that can provide another way to control such infections.

Timothy Lu, a Harvard Medical School student and Massachusetts Institute of Technology Ph.D. recipient, has found a way to use bacteriophage-viruses that infect bacteria cells but not human ones-to boost the effectiveness of antibiotics. This development could prove instrumental to conquering the problem of antibiotic-resistant drugs, such as methacillin-resistant Staphylococus aureas, which causes 94,000 cases of life-threatening infections among hospital patients each year.

Lu has engineered bacteriophage to cut through biofilm-the slick, protective coating that covers bacteria-and to seek out the gene mutations that create antibiotic resistance. The bacteriophage then destroy the resistance mechanisms, enabling antibiotic drugs to perform better. The combination of engineered bacteriophage and antibiotics have the potential to eliminate nearly 30,000 times more bacteria than antibiotics alone.

Lu received the Lemelson-MIT Student Prize of $30,000 for inventing the bacteriophage platform. He is developing a secondary use of the platform that would allow bacteriophage to kill off deadly biofilms that attach themselves to food processing equipment and medical instruments.

The success of Lu’s invention could spell out a much better prognosis for patients who are discovered to have methacillin-resistant Staphylococus aureas (MRSA) based on confirmation by hospital-based laboratory tests. Laboratories always welcome medical advancements that make a positive result from a laboratory test less devastating/life-threatening to patients. Lu’s new technology may have applications in the treatment of numerous other superbugs and antibiotic-resistant bacteria strains.

Related Articles:

;