News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Virginia Commonwealth University Study Determines 40% of Americans Have Liver Disease

Clinical laboratories and anatomic pathology groups should prepare for a marked increase in orders for liver disease testing

New research from Virginia Commonwealth University’s Institute for Liver Disease and Metabolic Health in Richmond shows that four out of every 10 Americans has fatty liver disease of some type, according to a news release. Forty percent of Americans is an astonishing number! The study’s findings will almost certainly lead to clinical laboratories performing more testing in support of diagnosis, treatment decision making, and patient monitoring for liver disease than currently ordered by physicians.

Hepatologist Juan Pablo Arab, MD, director of alcohol sciences at Virginia Commonwealth University (VCU), led the team that conducted the research. He noted that the driving force behind the numbers is obesity and type two diabetes.

The researchers based their study on data from the Centers for Disease Control and Prevention’s National Health and Nutrition Examination Survey, which recorded the health of more than 5,000 individuals from 2017 to 2018, Newsmax reported.

“By 2018, federal data showed that 42% of adults had some form of fatty liver disease—higher than prior estimates,” Arab’s team told Newsmax, adding that “Hispanic adults were at especially high risk … with nearly half (47%) affected.”

The scientists published their findings in Nature Communications Medicine titled, “Disparities in Steatosis Prevalence in the United States by Race or Ethnicity according to the 2023 Criteria.”

“This study highlights a significant health issue that affects a large portion of the US population, and it shows that certain groups are at a higher risk. We hope these findings will guide more targeted health interventions to reduce the burden of liver disease, especially in high-risk communities,” said Juan Pablo Arab, MD (above), hepatologist with VCU’s Institute for Liver Disease and Metabolic Health, director of alcohol sciences, and lead researcher in the VCU study, in a VCU news release. These insights can be expected to lead to guidelines calling for more clinical laboratory testing associated with the diagnosis of fatty liver disease. (Photo copyright: Virginia Commonwealth University.)

Clinical Laboratory Testing

The VCU researchers found that metabolic dysfunction-associated steatotic liver disease (MASLD), also known as nonalcoholic fatty liver disease (NAFLD), was primarily brought on by obesity and type 2 diabetes.

“Groups at greater risk for MASLD include men, adults older than 40, individuals with health insurance, those with higher body mass index, and people with other health issues like diabetes, high blood pressure, high triglycerides, and low levels of good cholesterol. Interestingly, the study found that black individuals had the lowest risk of developing MASLD compared with other groups,” the VCU news release notes.

Fatty liver disease can also be caused by excessive alcohol consumption (called alcohol-associated liver disease or ALD) or a combination of both metabolic dysfunction and moderate-to-high alcohol intake, which is called MetALD, Newsmax reported.

“Although MASLD was the most common type of liver disease found in this study, the researchers also uncovered substantial rates of MetALD and alcohol-associated liver disease. For MetALD, the study showed that men and individuals with a higher BMI [body mass index] were at a greater risk, and Asians were at lower risk. Surprisingly, the only factor that appeared to lower the risk of ALD was having health insurance, though the reasons for this are not clear,” according to the VCU news release.

On its website, Mayo Clinic notes that NAFLD is often symptomless, and that doctors typically depend on routine clinical laboratory blood test results to reach a diagnosis. Additional testing helps determine whether higher than normal liver enzymes are actually from fatty liver disease or some other condition.

Medical laboratories play a key role in facilitating the final diagnoses. According to Mayo Clinic, blood tests to identify liver disease include:

Medical imaging could also be required to reach a diagnosis, beginning with an abdominal ultrasound, Mayo Clinic added. Additionally, more precise tests may be ordered to determine the stiffness of the liver and likelihood of scarring or fibrosis. Those modalities include:

Labs will often perform these tests on the same patient multiple times as the patient’s lifestyle changes. A liver biopsy may also be required to determine severity of damage, Mayo Clinic added.

Increase in Testing

Fatty liver disease at its most severe can lead to acute liver failure and fatal kidney complications, the American Liver Foundation (ALF) reported. If symptoms appear, a patient may experience “fatigue, weakness, weight loss, loss of appetite, nausea,

abdominal pain, spider-like blood vessels, yellowing of the skin and eyes (jaundice), itching, fluid buildup and swelling of the legs (edema) and abdomen (ascites), and mental confusion,” the ALF added.

As more healthcare providers focus their attention on diagnosing and treating this potentially deadly disease, clinical laboratories and anatomical pathology groups will likely see an uptick in tests ordered by doctors moving from initial diagnoses to more detailed testing and eventually to treatment follow ups.

—Kristin Althea O’Connor

Related Information:

Fatty Liver Disease Now Affects Four in 10 US Adults

More than 40% of US Adults Have Liver Disease, with Higher Risk among Hispanics, New Study Finds

Disparities in Steatosis Prevalence in the United States by Race or Ethnicity According to the 2023 Criteria

Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD)

Nonalcoholic Fatty Liver Disease

Non-Alcoholic Fatty Liver Disease (NAFLD)

University College London Researchers Develop Carbon Beads That Slow the Progress of Liver Disease and Improve Gut Microbiome

As this therapeutic approach gains regulatory approval, clinical laboratory tests to determine condition of patient’s gut microbiota and monitor therapy will be needed

Some developments in the clinical laboratory industry are less about diagnostic tests and more about novel approaches to therapy. Such is the case with a new carbon bead technology developed by researchers from University College London (UCL) and the Royal Free Hospital intended to remove harmful bacteria toxins from the gut before they leak to the liver. The macroporous beads, which come in small pouches, are delivered orally and could be utilized in the future to treat a number of diseases.

Why is this relevant? Once a new treatment is accepted for clinical use, demand increases for a clinical laboratory test that confirms the therapy will likely work and to monitor its progress.

In collaboration with Yaqrit, a UK-based life sciences company that develops treatments for chronic liver disease, the UCL and Royal Free Hospital scientists engineered the carbon beads—known as CARBALIVE—to help restore gut health. They measured the technology’s impact on liver, kidney, and brain function in both rats and mice.

“The influence of the gut microbiome on health is only just beginning to be fully appreciated,” said Rajiv Jalan, PhD, Professor of Hepatology at UCL in a press release. “When the balance of the microbiome is upset, ‘bad’ bacteria can proliferate and out-compete the ‘good’ bacteria that keeps the gut healthy.

“One of the ways [the ‘bad’ bacteria] do this is by excreting endotoxin, toxic metabolites, and cytokines that transform the gut environment to make it more favorable to them and hostile to good bacteria,” he continued. “These substances, particularly endotoxin, can trigger gut inflammation and increase the leakiness of the gut wall, resulting in damage to other organs such as the liver, kidneys, and brain.”

The researchers published their findings in Gut, a journal of the British Society of Gastroenterology, titled, “Clinical, Experimental and Pathophysiological Effects of Yaq-001: A Non-absorbable, Gut-restricted Adsorbent in Models and Patients with Cirrhosis.”

“I have high hopes that the positive impact of these carbon beads in animal models will be seen in humans, which is exciting not just for the treatment of liver disease but potentially any health condition that is caused or exacerbated by a gut microbiome that doesn’t work as it should,” said Rajiv Jalan, PhD (above), Professor of Hepatology, University College London, in a press release. “This might include conditions such as irritable bowel syndrome (IBS), for example, which is on the rise in many countries.” Though not a clinical laboratory diagnostic test, new therapies like CARBALIVE could be a boon to physicians treating patients with IBS and other gastrointestinal conditions.

Developing the Carbon Beads

The team discovered CARBALIVE is effective in the prevention of liver scarring and injury in animals with cirrhosis when ingested daily for several weeks. They also found a reduced mortality rate in test animals with acute-on-chronic-liver-failure (ACLF).

After achieving success with CARBALIVE in animals, the researchers tested the technology on 28 cirrhosis patients. The carbon beads proved to be safe for humans and had inconsequential side effects.

“In cirrhosis, a condition characterized by scarring of the liver, it is known that inflammation caused by endotoxins can exacerbate liver damage,” Jalan explained. “Part of the standard treatment for cirrhosis is antibiotics aimed at controlling bad bacteria, but this comes with the risk of antibiotic resistance and is only used in late-stage disease.”

The beads, which are smaller than a grain of salt, contain an exclusive physical structure that absorbs large and small molecules in the gut. They are intended to be taken with water at bedtime as harmful bacteria is more likely to circulate through the body at night which could result in damage. The carbon beads do not kill bacteria, which decreases the risk of antibiotic resistance. They eventually pass through the body as waste.

“They work by absorbing the endotoxins and other metabolites produced by ‘bad’ bacteria in the gut, creating a better environment for the good bacteria to flourish and helping to restore microbiome health,” said Michal Kowalski, M.Sc.Eng, Director and VP of Operations at Yaqrit, in the UCL news release.

“This prevents these toxins from leaching into other areas of the body and causing damage, as they do in cirrhosis,” he added. “The results in animal models are very positive, with reduction in gut permeability, liver injury, as well as brain and kidney dysfunction.”

Additional Research

The researchers plan to perform further clinical trials in humans to determine if the carbon beads are effective at slowing the progression of liver disease. If the benefits that were observed in lab animals prove to be compelling in humans, the technology may become an invaluable tool for the treatment of liver disease and other diseases associated with poor microbiome health in the future.

According to the American Liver Foundation, 4.5 million adults in the US have been diagnosed with liver disease. However, it is estimated that 80 to 100 million adults have some form of fatty liver disease and are unaware of it. Liver disease was the 12th leading cause of death in the US in 2020 with 51,642 adults perishing from the disease that year.

According to BMC Public Health, globally there were 2.05 million new cases of liver cirrhosis diagnosed in 2019. In that year, 1.47 million people around the world died from the disease.

More research and clinical studies are needed before this novel technology can be used clinically. When and if that happens, the demand for clinical laboratory tests that measure microbiome deficiencies and monitor patient progress during therapy will likely be high.

—JP Schlingman

Related Information:

Carbon Beads Help Restore Healthy Gut Microbiome and Reduce Liver Disease Progression

Clinical, Experimental and Pathophysiological Effects of Yaq-001: A Non-absorbable, Gut-restricted Adsorbent in Models and Patients with Cirrhosis

Tiny Beads of Carbon Could Save Lives

UCL Study Reveals Carbon Beads Could Help Reduce Progression of Liver Disease

How Many People Have Liver Disease?

Global Epidemiology of Cirrhosis—Aetiology, Trends and Predictions

Global Burden of Liver Cirrhosis and Other Chronic Liver Diseases Caused by Specific Etiologies from 1990 to 2019

Acute-on-Chronic Liver Failure: Definition, Prognosis and Management

;