Newly-defined Cardiovascular-Kidney-Metabolic Syndrome (CKM) means physicians will be in close collaboration with clinical laboratories to make accurate diagnoses
In a presidential advisory, the AHA defines a newly described systemic health disorder called Cardiovascular-Kidney-Metabolic Syndrome (CKM). The syndrome “is a systemic disorder characterized by pathophysiological interactions among metabolic risk factors, CKD (chronic kidney disease), and the cardiovascular system leading to multi-organ failure and a high rate of adverse cardiovascular outcomes.”
A CKM diagnosis, which is meant to identify patients who are at high risk of dying from heart disease, is based on a combination of risk factors, including:
weight problems,
issues with blood pressure, cholesterol, and/or blood sugar,
reduced kidney function.
CKM is a new term and doctors will be ordering medical laboratory tests associated with diagnosing patients with multiple symptoms to see if they match this diagnosis. Thus, clinical laboratory managers and pathologists will want to follow the adoption/implementation of this new recommendation.
“The advisory addresses the connections among these conditions with a particular focus on identifying people at early stages of CKM syndrome,” said Chiadi Ndumele, MD, PhD (above), Associate Professor of Medicine at Johns Hopkins University and one of the authors of the AHA paper, in a news release. “Screening for kidney and metabolic disease will help us start protective therapies earlier to most effectively prevent heart disease and best manage existing heart disease.” Clinical laboratories will play a key role in those screenings and in diagnosis of the new syndrome. (Photo copyright: Johns Hopkins University.)
Stages of CKM Syndrome
In its presidential advisory, the AHA wrote, “Cardiovascular-Kidney-Metabolic (CKM) syndrome is defined as a health disorder attributable to connections among obesity, diabetes, chronic kidney disease (CKD), and cardiovascular disease (CVD), including heart failure, atrial fibrillation, coronary heart disease, stroke, and peripheral artery disease. CKM syndrome includes those at risk for CVD and those with existing CVD.”
The five stages of CKM syndrome, which the AHA provided to give a framework for patients to work towards regression of the syndrome, are:
Stage 0: No CKM risk factors. Individuals should be screened every three to five years for blood pressure, cholesterol, and blood sugar levels, and for maintaining a healthy body weight.
Stage 1: Excess body fat and/or an unhealthy distribution of body fat, such as abdominal obesity, and/or impaired glucose tolerance or prediabetes. Patients have risk factors such as weight problems or prediabetes and are encouraged to make healthy lifestyle changes and try to lose at least 5% of their body weight.
Stage 2: Metabolic risk factors and kidney disease. Includes people who already have Type 2 diabetes, high blood pressure, high triglyceride levels, and/or kidney disease. Medications that target kidney function, lower blood sugar, and which help with weight loss should be considered at this stage to prevent diseases of the heart and blood vessels or kidney failure.
Stage 3: Early cardiovascular disease without symptoms in people with metabolic risk factors or kidney disease or those at high predicted risk for cardiovascular disease. People show signs of disease in their arteries, or have heart function issues, or may have already had a stroke or heart attack or have kidney or heart failure. Medication may also be needed at this stage.
Stage 4: Symptomatic cardiovascular disease in people with excess body fat, metabolic risk factors or kidney disease. In this stage, people are categorized as with or without having kidney failure. May also have already had a heart attack, stroke or heart failure, or cardiovascular conditions such as peripheral artery disease or atrial fibrillation.
“We now have several therapies that prevent both worsening kidney disease and heart disease,” said Chiadi Ndumele, MD, PhD, Associate Professor of Medicine at Johns Hopkins University and one of the authors of the Circulation paper, in a news release. “The advisory provides guidance for healthcare professionals about how and when to use those therapies, and for the medical community and general public about the best ways to prevent and manage CKM syndrome.”
According to an AHA 2023 Statistical Update, one in three adults in the US have three or more risk factors that contribute to cardiovascular disease, metabolic disorders, or kidney disease. While CKM affects nearly every major organ in the body, it has the biggest impact on the cardiovascular system where it can affect the blood vessels, heart muscle function, the rate of fatty buildup in the arteries, electrical impulses in the heart and more.
“There is a need for fundamental changes in how we educate healthcare professionals and the public, how we organize care and how we reimburse care related to CKM syndrome,” Ndumele noted. “Key partnerships among stakeholders are needed to improve access to therapies, to support new care models, and to make it easier for people from diverse communities and circumstances to live healthier lifestyles and to achieve ideal cardiovascular health.”
New AHA Risk Calculator
In November, the AHA announced PREVENT (Predicting risk of cardiovascular disease EVENTs), a tool that doctors can use to assess a person’s risk for heart attack, stroke, and heart failure. The new risk calculator, which incorporates CKM, allows physicians to evaluate younger people as well, and examine their long-term risks for cardiovascular issues.
Doctors can use PREVENT to assess people ages 30 to 79 and predict risk for heart attack, stroke, or heart failure over 10 to 30 years.
“Longer-term estimates are important because short-term or 10-year risk in most young adults is still going to be low. We wanted to think more broadly and apply a life-course perspective,” Khan said. “Providing information on 30-year risk may reveal earlier opportunities for intervention and prevention efforts in younger people.”
According to CDC data, about 695,000 people died of heart disease in the US in 2021. That equates to one in every five deaths. Clinical pathologists will need to understand the AHA recommendations and how doctors will be ordering clinical laboratory tests to determine if a patient has CKM. Then, labs will play a role in helping doctors monitor patients to optimize health and prevent acute episodes that put patients in the hospital.
The software applications (apps) and hardware monitoring devices involved in digital therapeutics enable physicians and patients to target and alter specific behaviors that affect certain medical conditions, such as substance abuse or depression. Combined with or without drugs, digital therapeutics are achieving positive results, according to the United Kingdom’s PwC (PricewaterhouseCoopers) Health Research Institute (PwC HRI).
The report goes on to state that digital therapeutics “is
reshaping the landscape for new medicines, product reimbursement and regulatory
oversight … [and that] new data sharing processes and payment models will be
established to integrate these products into the broader treatment arsenal and
regulatory structure for drug and device approvals.
“Connected health services,” the report continues, “enabled by devices that transmit data or connect to the Internet, give additional visibility into care delivery and new ways to improve patient outcomes.”
Digital therapeutics combine apps and monitoring devices for
the management and treatment of medical conditions. While similar to customer
wellness apps, digital therapeutics focus on specific clinical outcomes.
The non-profit Digital Therapeutics Alliance says that, unlike common “wellness” apps, digital therapeutics “possess the unique ability to incorporate additional functionalities into a comprehensive portfolio of synchronous products and services. This includes potential integration with mobile health platforms; the provision of complementary diagnostic or adherence interventions; the ability to pair with devices, sensors, or wearables; the delivery of interventions remotely; and integration into electronic prescribing, dispensing, and medical record platforms.”
“Digital therapeutics are the next frontier,” Sai Jasti, Chief Data and Analytics Officer, GlaxoSmithKline (NYSE:GSK), told PwC HRI. “I think we will see a lot more collaboration between pharmaceutical and technology companies to drive this forward, ultimately to the benefit of patients.”
Digital Therapeutics That Already Have FDA Approval
Digital therapeutics and their connected devices are subject
to the approval process of the federal Food and Drug Administration (FDA), and
some have already received that coveted clearance:
reSET from Pear Therapeutics is a 90-day prescription digital therapeutic (PDT) for substance use disorder (SUD). The Boston-based company also worked with Sandoz Inc., a division of Novartis, to receive FDA approval for reSET-O, a PDT for treating individuals with Opioid Use Disorder (OUD).
“Digital technologies and data science have incredible potential to unlock the next chapter of medical innovation and to help individuals finally take control of their own health in a meaningful way,” said Richard Francis, Division Head and CEO, Sandoz, in a press release. “New digital therapeutics such as reSET-O also have the potential to fundamentally change how patients interact with their therapies and thus improve patient outcomes.”
Both reSET and reSET-O are software mobile apps that use cognitive behavioral therapy (CBT) to help individuals struggling with addictions.
“Nearly 50,000 drug overdose deaths involving opioids, including prescription pain medications and heroin, took place in the U.S. in 2017,” said Corey McCann, MD, PhD, President and CEO of Pear Therapeutics, in the press release following receiving FDA approval. “There is an urgent need for new and innovative therapeutics to address this public health epidemic. This groundbreaking decision by the FDA ushers in a new standard for treating patients with Opioid Use Disorder and it signals a new path for therapeutic software to be used in conjunction with pharmacotherapy to improve efficacy.”
Natural
Cycles is a birth control app created by a Sweden-based company of the same
name. It was approved by the FDA in 2018. This mobile app helps women track
their fertility to prevent unwanted pregnancies via the rhythm method. The app
analyzes data from past menstrual cycles and body temperature readings to
determine when the user is most fertile. On the days the user is most likely to
be ovulating, the app displays “Use Protection” on the mobile device’s screen.
“We know that women are more likely to use contraceptive methods when they have a variety of methods available to them, and the reality is that not every method is going to work for every woman,” Rebecca Simmons, PhD, Research Assistant Professor, Department of Obstetrics and Gynecology, University of Utah, told Health. “This is really exciting, in the sense that the more methods we have, the more likely it is that people can find something that works for them—and then can avoid unwanted pregnancy.”
Apple, headquartered in Cupertino, Calif., received FDA clearance in 2018 for an electrocardiogram (ECG) app for its Apple Watch Series 4 that allows users to take an ECG from their wrist to detect irregular heart rhythms and atrial fibrillation (AFIB).
“The role that technology plays in allowing patients to capture meaningful data about what’s happening with their heart—at the moment when it’s happening, like the functionality of an on-demand ECG—could be significant in new clinical care models and shared decision-making between people and their healthcare providers,” said Nancy Brown, CEO of the American Heart Association, in a press release.
Patients, Providers, and Big Pharma All Like Digital
Therapeutics
There is some evidence that patients and healthcare
providers are intrigued and willing to try digital therapeutics. In a PwC HRI survey,
more than 50% of respondents said they “would be somewhat or very likely to try
an FDA-approved app or online tool for treatment of a medical condition.”
Pharmaceutical companies also are interested in digital therapeutics. A 2018 PwC HRI survey found that 80% of pharmaceutical executives had plans to invest in digital therapeutics in the near future.
With precision medicine and pharmacogenetics, clinical laboratories
could play an essential role in supporting digital therapeutics in the future. But
to truly be competitive in this space and take advantage of the opportunity, medical
laboratories will need to increase their information technology and digital
capabilities.
UK study shows how LDTs may one day enable physicians to identify patients genetically predisposed to chronic disease and prescribe lifestyle changes before medical treatment becomes necessary
Could genetic predisposition lead to clinical laboratory-developed tests (LDTs) that enable physicians to assess patients’ risk for specific diseases years ahead of onset of symptoms? Could these LDTs inform treatment/lifestyle changes to help reduce the chance of contracting the disease?
A UK study into the genetics of one million people with high blood pressure reveals such tests could one day exist.
They also confirmed 274 loci (gene locations) and replicated 92 loci for the first time.
“This is the most major advance in blood pressure genetics to date. We now know that there are over 1,000 genetic signals which influence our blood pressure. This provides us with many new insights into how our bodies regulate blood pressure and has revealed several new opportunities for future drug development,” said Mark Caulfield, MD,
The researchers believe “this means almost a third of the estimated heritability for blood pressure is now explained,” the news release noted.
Clinical Laboratories May Eventually Get a Genetic Test Panel for Hypertension
Of course, more research is needed. But the study suggests a genetic test panel for hypertension may be in the future for anatomic pathologists and medical laboratories. Physicians might one day be able to determine their patients’ risks for high blood pressure years in advance and advise treatment and lifestyle changes to avert medical problems.
By involving more than one million people, the study also demonstrates how ever-growing pools of data will be used in research to develop new diagnostic assays.
The video above summarizes research led by Queen Mary University of London and Imperial College London, which found over 500 new gene regions that influence people’s blood pressure, in the largest global genetic study of blood pressure to date. Click here to view the video. (Photo and caption copyright: Queen Mary University of London.)
Genetics Influence Blood Pressure More Than Previously Thought
In addition to identifying hundreds of new genetic regions influencing blood pressure, the researchers compared people with the highest genetic risk of high blood pressure to those in the low risk group. Based on this comparison, the researchers determined that all genetic variants were associated with:
“having around a 13 mm Hg higher blood pressure;
“having 3.34 times the odds for increased risk of hypertension; and,
“1.52 times the odds for increased risk of poor cardiovascular outcomes.”
“We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation, but also highlight shared genetic architecture between blood pressure and lifestyle exposures. Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future,” the researchers wrote in Nature Genetics.
Other Findings Link Known Genes and Drugs to Hypertension
The UK researchers also revealed the Apolipoprotein E (ApoE) gene’s relation to hypertension. This gene has been associated with both Alzheimer’s and coronary artery diseases, noted LabRoots. The study also found that Canagliflozin, a drug used in type 2 diabetes treatment, could be repurposed to also address hypertension.
“Identifying genetic signals will increasingly help us to split patients into groups based on their risk of disease,” Paul Elliott, PhD, Professor, Imperial College London Faculty of Medicine, School of Public Health, and co-lead author, stated in the news release. “By identifying those patients who have the greatest underlying risk, we may be able to help them to change lifestyle factors which make them more likely to develop disease, as well as enabling doctors to provide them with targeted treatments earlier.”
Working to Advance Precision Medicine
The study shares new and important information about how genetics may influence blood pressure. By acquiring data from more than one million people, the UK researchers also may be setting a new expectation for research about diagnostic tests that could become part of the test menu at clinical laboratories throughout the world. The work could help physicians and patients understand risk of high blood pressure and how precision medicine and lifestyle changes can possibly work to prevent heart attacks and strokes among people worldwide.