Early detection can raise five-year survival rates above 90%, yet most ovarian cancer cases are found late. Emerging biomarker panels and AI-driven tools are empowering labs to make early diagnosis a reality.
For clinical laboratories, the fight against ovarian cancer highlights both the challenges and opportunities in early disease detection. Despite being one of the most difficult cancers to diagnose in its early stages, ovarian cancer outcomes improve dramatically when it’s caught early—underscoring the importance of laboratory innovation, diagnostic vigilance, and collaboration with clinicians. As researchers explore new biomarkers and AI-assisted tools for earlier, less invasive detection, lab professionals are positioned to play a pivotal role in advancing women’s health and improving survival rates.
Detecting ovarian cancer early is challenging but crucial for timely, effective treatment and improved survival. Too often, women are diagnosed after the disease has advanced. However, experts emphasize that the so-called “silent killer” doesn’t have to be silent—greater awareness of its warning signs and risk factors can make a life-saving difference.
“All women are at risk for gynecologic cancers, and risk increases with age,” explained Ruth Stephenson, DO, Gynecologic Oncologist at RWJBarnabas Health (RWJBH) and Rutgers Cancer Institute in a blog post. “If women suspect something isn’t right, for any reason, they shouldn’t hesitate. Early detection is their greatest asset.”
Stephenson encourages women to be proactive by maintaining regular health visits and being cognizant of their risk factors and the possible symptoms of ovarian cancer.
Other symptoms may include fatigue, upset stomach, back pain, pain during intercourse, constipation, menstrual cycle changes, and abdominal swelling.
Declines in Ovarian Cancer Cases Reflect Prevention Gains but Ongoing Risks Persist
Cases of ovarian cancer have been on the decline over the past several decades and ovarian cancer deaths have decreased by 43% since 1976, mostly due to increased use of oral contraceptives and lower use of hormonal therapies. According to the ACS, approximately 20,890 women will receive an ovarian cancer diagnosis in 2025 and about 12,730 women will die from the disease this year. Approximately half the diagnoses of ovarian cancer occur in women over the age of 63 and it is the sixth most common cancer among women in the US. A woman’s risk of getting the disease is about 1 in 91 and the risk of dying from ovarian cancer is approximately 1 in 143.
The cause of most ovarian cancers is unknown, but several aspects have been identified that may affect the risk for obtaining the illness, including:
Older age
Inherited gene mutations, such as BRCA1, BRCA2, or Lynch syndrome
Ruth Stephenson, DO, Gynecologic Oncologist at RWJBH and Rutgers Cancer Institute noted, “Knowing your family history of ovarian and breast cancers, listening to your body, and asking the right questions are among your strongest tools.”
The five-year survival rate for women diagnosed in Stage 1 of ovarian cancer is over 90%, but the survival rates decrease substantially when diagnosed in the later stages. Researchers have been using AI along with blood tests that combine protein and lipid markers to develop methods for earlier and less invasive detection of the disease. Other studies are being conducted to determine whether urine or vaginal samples can detect molecular changes linked to ovarian cancer.
Awareness Campaigns
In September, the ACS and Break Through Cancer announced a collaboration to advance awareness and prevention of ovarian cancer. “This alliance will turn two decades of scientific advances into action by combining research, education, awareness, marketing, and policy strategies to support those at risk of ovarian cancer and their clinicians,” the ACS said in a news release.
“The Outsmart Ovarian Cancer campaign seeks to close the gap between science and practice to ensure that patients and health care providers know the facts, the options, and have the potential to stop ovarian cancer before it starts,” said William Dahut, MD, chief scientific officer of the American Cancer Society. “This awareness campaign aims to give everyone their best chance to outsmart ovarian cancer.”
Detection and treatment options for ovarian cancer continue to improve and providing women with important information about the disease is part of a fundamental strategy for conquering the illness.
“With the American Cancer Society’s national platform and Break Through Cancer’s scientific engine, we are joining forces to bring this knowledge to millions of women,” said Tyler Jacks, PhD, president of Break Through Cancer. “The Outsmart Ovarian Cancer campaign is poised to share emerging research, inform patients, and support health care providers with resources and evolving prevention strategies.”
As awareness campaigns like Outsmart Ovarian Cancer bring renewed focus to prevention and early diagnosis, laboratories have an opportunity to strengthen their role as educators and innovators. Whether through developing and validating biomarker panels, participating in clinical trials, or helping providers interpret evolving screening data, labs can help bridge the gap between research and real-world care. In the ongoing effort to make ovarian cancer less “silent,” the laboratory’s voice—and its science—are essential.
Promising results showcase benefits of MCED lab tests and provide hope for continued advancements
In impressive new research, Johns Hopkins School of Medicine has developed a clinical laboratory blood test that detects the presence of cancer years before symptoms present, aiding physicians with early diagnosis and treatment.
The identification of cancer cells comes via bloodstream analysis showing genetic materials shed by tumors and showcases the promise of multicancer early detection screening (MCED) to spot all types of cancer in early stages.
“Three years earlier provides time for intervention. The tumors are likely to be much less advanced and more likely to be curable,” Yuxuan Wang, MD, PhD, lead researcher and assistant professor of oncology at Johns Hopkins, told SciTechDaily.
Kimmel Cancer Center, Ludwig Center, the Bloomberg School of Public Health also participated in the study with the support of the National Institutes of Health (NIH).
Senior study author Nickolas Papadopoulos, PhD, professor of oncology at Johns Hopkins School of Medicine and senior author of the study, notes that an appropriate course of clinical care will be required following any positive result from the new cancer diagnostic blood test. (Photo copyright: Johns Hopkins.)
Johns Hopkins Study Details
To complete their research, the scientists studied plasma samples that came from the NIH study on Atherosclerosis Risk in Communities (ARIC), which was created to examine cardiovascular disease risk factors in heart failure, strokes, and heart attacks, SciTechDaily reported.
The researchers analyzed the samples using “highly accurate and sensitive sequencing techniques to analyze blood samples from 26 participants in the ARIC study who were diagnosed with cancer within six months after sample collection, and 26 from similar participants who were not diagnosed with cancer, ” SciTechDaily noted.
At the time of sample gathering, eight of the study participants had received a positive score on the MCED test. Six of them provided additional blood samples dating back 3.1 to 3.5 years. Four of those samples showed mutations, SciTechDaily reported.
Value of MCED Screening
While the sample size in the Johns Hopkins study is small, results of the tests give patients and their physicians a head start on identifying appropriate treatments and demonstrate the strides already made with MCED screening.
MCED tests are relatively new, and while they continue to lack FDA-approval, their ability to discern various types of cancer and provide advanced detection with helpful results make them a promising approach to early cancer screening, the American Cancer Society (ACS) notes.
“For cancers of all stages, therapies are more effective with a lower disease burden,” the scientists wrote in Cancer Discovery.
MCED tests use blood, saliva, urine, or other body fluids to seek out cancer signs through RNA, DNA, or proteins from abnormal cells that may be cancerous. Current screening can assist with cervical, breast, colorectal, prostate, or lung cancer, the ACS added.
Spotting Cancer Earlier
The Johns Hopkins scientist believe detection beyond three years early is likely. “In four of these six participants, the same mutations detected by the multicancer early detection test could be identified, but at 8.6- to 79-fold lower mutant allele fractions. These results demonstrate that it is possible to detect [circulating tumor DNA] more than three years prior to clinical diagnosis and provide benchmark sensitivities required for this purpose,” the Cancer Discovery study notes.
“Detecting cancers years before their clinical diagnosis could help provide management with a more favorable outcome,” Nickolas Papadopoulos, PhD, professor of oncology at Johns Hopkins School of Medicine and senior author of the study, told SciTechDaily.
“Of course, we need to determine the appropriate clinical follow-up after a positive test for such cancers,” he added.
Genetic test that analyzes DNA to identify men at greatest risk for developing the disease could become common clinical laboratory screen for cancer
Researchers in the UK believe a common spit test can be more accurate at determining which men are more likely to develop prostate cancer than the clinical laboratory prostate-specific antigen (PSA) blood test currently used by the National Health Service (NHS) for that diagnosis.
During a recent study, scientists at the Institute of Cancer Research, London (ICR), found that germline DNA extracted from saliva, which was then used to derive polygenic risk scores for cancer, resulted in a higher percentage of participants “found to have clinically significant disease” than the percentage that would have been identified with the use of PSA or MRI.
The salvia test works by analyzing men’s DNA to find out if they are genetically pre-disposed to developing the disease. Men who find out they are likely to develop prostate cancer can then pursue further testing and scans.
“The test assesses 130 genetic variants to provide a risk score for prostate cancer, which is the second most common cause of cancer deaths in men in the UK,” The Guardian reported.
The study found that 187 of the men in the study had prostate cancer. According to the American Cancer Society, one in eight men will be diagnosed with prostate cancer in their lifetime.
“We can identify men at risk of aggressive cancers who need further tests and spare the men who are at lower risk from unnecessary treatments,” said study leader Rosalind Eeles, PhD, of the ICR London, in The Guardian.
“With this test, it could be possible to turn the tide on prostate cancer,” Rosalind Eeles, PhD, of the Institute of Cancer Research, London, told the BBC. (Photo copyright: Prostate Cancer UK.)
Landmark Discovery
Michael Inouye, PhD, professor of systems genomics and population health at the University of Cambridge, told the BBC that researchers will look back on this study “as a landmark.” He also acknowledged that it would be a long road before widespread implementation of the test.
While some sources call the ICR’s test promising, they also acknowledge it may only have a modest effect and that there may be possible racial disparities in the findings. The study was primarily based on people with European ancestry. According to Prostate Cancer UK, black men in the UK have double the risk of developing the disease. A similar trend can be observed in the US, Statistica reported.
Dusko Ilic, PhD, professor in stem cell sciences at King’s College London, told the BBC that there was “no direct evidence” of these findings having an effect on survival or quality of life. He stressed the need for more studies to better assess the value of the test.
The salvia test is expected to be included in Prostate Cancer UK’s TRANSFORM trial, a $58 million research program partly funded by the NHS to determine the best way to screen for cancer in the UK.
Effect on Clinical Pathologists
Prostate cancer is expected to surge in the US over the next 15 years, according to UC Davis Health. Thus, pathologists should expect more men to seek ways to assess their risk. Pathologists would be wise to educate themselves fully on new and emerging tests and tools to best meet the needs of their patients.
Given the publicity generated by former President Biden’s announcement that he has an advanced case of prostate cancer, clinical laboratories should also expect more patients to request diagnostic tests that either screen for or confirm the presence of the disease.
Researchers in Sweden develop urine test that more effectively screens for prostate cancer than standard PSA test
Clinical laboratories may soon have a new inexpensive, non-invasive urine test to screen for prostate cancer that produces superior results compared to the standard PSA test.
An international team of scientists led by researchers at the Karolinska Institutet in Sweden found they could use machine learning to not only accurately identify the presence of a new set cancer biomarkers in urine samples but also determine the stage or grade of the cancer.
“There are many advantages to measuring biomarkers in urine,” said Mikael Benson, principal researcher in the Department of Clinical Science, Intervention and Technology at Karolinska Institutet and senior investigator for the study, in a news release. “It’s non-invasive and painless and can potentially be done at home. The sample can then be analyzed using routine methods in clinical labs.”
“New, more precise biomarkers than PSA can lead to earlier diagnosis and better prognoses for men with prostate cancer,” said Mikael Benson, principal researcher at Karolinska Institutet and senior investigator for the study, in a news release. “Moreover, it can reduce the number of unnecessary prostate biopsies in healthy men.” (Photo copyright: Karolinska Institutet.)
New Prostate Cancer Biomarkers
According to the American Cancer Society, there will be approximately 313,780 new cases of prostate cancer diagnosed this year in the US with about 35,770 deaths due to the disease. About one in eight US men will be diagnosed with prostate cancer in their lifetime, and the lifetime risk of dying from prostate cancer is one in 44 men.
“Early cancer diagnosis is crucial but challenging owing to the lack of reliable biomarkers that can be measured using routine clinical methods. The identification of biomarkers for early detection is complicated by each tumor involving changes in the interactions between thousands of genes. In addition to this staggering complexity, these interactions can vary among patients with the same diagnosis as well as within the same tumor,” the researchers wrote in Cancer Research.
The scientists “hypothesized that reliable biomarkers that can be measured with routine methods could be identified by exploiting three facts:
The same tumor can have multiple grades of malignant transformation;
These grades and their molecular changes can be characterized using spatial transcriptomics; and,
These changes can be integrated into models of malignant transformation using pseudotime models to prioritize the genes that were most correlated with malignant transformation.”
To perform their study, the scientists analyzed the mRNA activity of cells in prostate tumors to construct digital models of prostate cancer. These models were then examined using machine learning, a type of artificial intelligence (AI), to locate specific proteins that could be used as biomarkers.
The researchers evaluated these new biomarkers in urine, blood, and tissue samples from more than 2,000 prostate cancer patients along with a control group. The team’s final calculations found the results of the urine test surpassed the current PSA test traditionally used for diagnosing prostate cancer.
“Prostate cancer can be effectively identified by analyzing the expression of candidate biomarkers in urine,” lead study author Martin Smelik, PhD student at Karolinska Institutet, told Fox News. “This approach outperforms the current blood tests based on PSA, but at the same time keeps the advantages of being non-invasive, painless, and relatively cheap.”
Advancements over Traditional PSA Test
Although the prostate-specific antigen (PSA) test typically used by doctors to diagnose prostate cancer can screen for the disease and monitor its progression, it has limitations.
“While PSA is an incredibly sensitive tool for issues related to the prostate, it is not specific to prostate cancer,” Matthew Abramowitz, MD, associate professor in the Department of Radiation Oncology at the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, told Fox News. “The techniques proposed in the current study suggest the promise of identifying specific cancer markers in the urine, minimizing some of the specificity concerns associated with PSA.”
“This study highlights the power of machine learning applied to patient data in identifying breakthroughs that can help us diagnose cancer earlier, when our treatments are most effective,” Timothy Showalter, MD, a radiation oncologist at UVA Health in Virginia, told Fox News. “Prostate cancer screening has not seen a transformative advance in decades, and current approaches still rely on the PSA blood test, which is known to have low specificity for clinically significant cancers.”
“Overall, this study demonstrates the diagnostic potential of combining spatial transcriptomics, pseudotime, and machine learning for prostate cancer, which should be further tested in prospective studies,” the researchers wrote.
The Karolinska Institutet team is planning large-scale clinical trials as the next phase of their exploration.
Trend will likely lead to physicians ordering more clinical laboratory screening tests for cancer among all age groups, including young patients
Upticks in colorectal cancer cases among younger populations, as reported in recent news stores, is an issue that has implications for clinical laboratories. According to a study conducted at the University of Missouri-Kansas City (UMKC), the number of colorectal cancer cases in the US has increased greatly since 1999 with the “most dramatic jumps” seen in children, teens, and young adults, a Digestive Disease Week (DDW) news release reported.
“Colorectal cancer is no longer considered just a disease of the elderly population,” said lead researcher Islam Mohamed, MD, an internal medicine resident physician at UMKC. “It’s important that the public is aware of signs and symptoms of colorectal cancer.”
The researchers noted in the DDW news release that “colorectal cancer cases, over about two decades, increased by 500% among children, ages 10 to 14; 333% in teens, ages 15 to 19; and 185% among young adults, ages 20 to 24.”
“[The results of the UMKC study] means that there is a trend. We don’t know what to make of it yet. It could be lifestyle factors or genetics, but there is a trend,” lead researcher Islam Mohamed, MD (above), Internal Medicine Resident, University of Missouri-Kansas City, told NBC News. If proved, this trend could lead to increased demand for clinical laboratory screening tests for colorectal and other cancers among young people. (Photo copyright: Digestive Disease Week.)
0.6/100,000 children ages 10 to 14 (a 500% increase).
1.3/100,000 teens ages 15 to 19 (a 333% increase).
Two/100,000 young adults ages 20 to 24 (a 185% increase).
Albeit small numbers, the cases are growing at a rate that is troublesome, according to experts. As NBC put it, “any increase can take on a larger significance” when rates begin at low points.
The study also found incidence of colorectal cancer up in people in their 30s and 40s, reaching by 2020:
6.5/100,000 people ages 30 to 34 (a 71% increase).
11.7/100,000 people ages 35 to 39 (a 58% increase).
20/100,000 people ages 40 to 44 (a 37% increase).
Screening Guidelines May Need to Change
Further research based on UMKC’s study findings could lead to changes in cancer screening guidelines.
“We were screening people from the age of 60 for colon cancer. This has now been lowered to 55, and that is due to be lowered again to 50 over the next few months,” Jude Tidbury, RN, nurse endoscopist and clinical nurse specialist, gastroenterology and endoscopy, at the UK’s East Sussex Healthcare NHS Trust, told Healthline.
In the US, the American Cancer Society advises people of average risk for cancer to start screening for colorectal cancer at age 45. The test options ACS recommends annually include:
What is behind early-onset colorectal cancer among certain age groups? An international study led by Fred Hutchinson Cancer Center (Fred Hutch), Seattle, found “strong correlations” with consuming alcohol and being obese with early-onset colorectal cancer in adults under age 50, according to a news release.
The researchers set out to explore the common genetic variants and causal modifiable risk factors that are behind early-onset colorectal cancer, according to a paper they published in the journal Annals of Oncology.
To do so they used big databases, pulling out 6,176 early-onset colorectal cancer cases and 65,829 controls from sources including:
They focused on “lifestyle factors increasing risk” by comparing the genetic variations in those with colorectal cancer to healthy people, the Fred Hutch news release explained.
“It’s important to see that alcohol and obesity are linked to early-onset colorectal cancer. Also, insulin signaling and infection-related biological pathways. These are all really important to understand—it’s helping us to develop interventions,” said Ulrike Peters, PhD, Professor and Associate Director, Public Health Services Division, Fred Hutch, who co-led the research, in the news release.
Peters noted future research may aim to address data gaps relating to racial and ethnic groups.
More Colorectal Cancer Tests
As studies continue to explore the notion that cancer may not be a disease of aging,
clinical laboratories could see more primary care physicians and healthcare consumers using colorectal cancer screening tests, which require analysis and reporting by labs.
Medical laboratory leaders may want to proactively encourage lab sales and service representatives to educate physician office staff about using the lab’s available resources for screening young adults for colorectal cancer.