News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

World Economic Forum Publishes Updated List of 12 Breakthroughs in Fight against Cancer That Includes Innovative Clinical Laboratory Test (Part 2)

These advances in the battle against cancer could lead to new clinical laboratory screening tests and other diagnostics for early detection of the disease

As Dark Daily reported in part one of this story, the World Economic Forum (WEF) has identified 12 new breakthroughs in the fight against cancer that will be of interest to pathologists and clinical laboratory managers.

As we noted in part one, the WEF originally announced these breakthroughs in an article first published in May 2022 and then updated in October 2024. According to the WEF, the World Health Organization (WHO) identified cancer as a “leading cause of death globally” that “kills around 10 million people a year.”

The WEF is a non-profit organization base in Switzerland that, according to its website, “engages political, business, academic, civil society and other leaders of society to shape global, regional and industry agendas.”

Monday’s ebrief focused on four advances identified by WEF that should be of particular interest to clinical laboratory leaders. Here are the others.

Personalized Cancer Vaccines in England

The National Health Service (NHS) in England, in collaboration with the German pharmaceutical company BioNTech, has launched a program to facilitate development of personalized cancer vaccines. The NHS Cancer Vaccine Launch Pad will seek to match cancer patients with clinical trials for the vaccines. The Launch Pad will be based on messenger ribonucleic acid (mRNA) technology, which is the same technology used in many COVID-19 vaccines.

The BBC reported that these cancer vaccines are treatments, not a form of prevention. BioNTech receives a sample of a patient’s tumor and then formulates a vaccine that exposes the cancer cells to the patient’s immune system. Each vaccine is tailored for the specific mutations in the patient’s tumor.

“I think this is a new era. The science behind this makes sense,” medical oncologist Victoria Kunene, MBChB, MRCP, MSc (above), trial principal investigator from Queen Elizabeth Hospital Birmingham (QEHB) involved in an NHS program to develop personalized cancer vaccines, told the BBC. “My hope is this will become the standard of care. It makes sense that we can have something that can help patients reduce their risk of cancer recurrence.” These clinical trials could lead to new clinical laboratory screening tests for cancer vaccines. (Photo copyright: Queen Elizabeth Hospital Birmingham.)

Seven-Minute Cancer Treatment Injection

NHS England has also begun treating eligible cancer patients with under-the-skin injections of atezolizumab, an immunotherapy marketed under the brand name Tecentriq, Reuters reported. The drug is usually delivered intravenously, a procedure that can take 30 to 60 minutes. Injecting the drug takes just seven minutes, Reuters noted, saving time for patients and cancer teams.

The drug is designed to stimulate the patient’s immune system to attack cancer cells, including breast, lung, liver, and bladder cancers.

AI Advances in India

One WEF component—the Center for the Fourth Industrial Revolution (C4IR)—aims to harness emerging technologies such as artificial intelligence (AI) and virtual reality. In India, the organization says the Center is seeking to accelerate use of AI-based risk profiling to “help screen for common cancers like breast cancer, leading to early diagnosis.”

Researchers are also exploring the use of AI to “analyze X-rays to identify cancers in places where imaging experts might not be available.”

Using AI to Assess Lung Cancer Risk

Early-stage lung cancer is “notoriously hard to detect,” WEF observed. To help meet this challenge, researchers at Massachusetts Institute of Technology (MIT) developed an AI model known as Sybil that analyzes low-dose computed tomography scans to predict a patient’s risk of getting the disease within the next six years. It does so without a radiologist’s intervention, according to a press release.

The researchers tested the system on scans obtained from the National Lung Cancer Screening Trial, Mass General Hospital (MGH), and Chang Gung Memorial Hospital. Sybil achieved C-index scores ranging from 0.75 to 0.81, they reported. “Models achieving a C-index score over 0.7 are considered good and over 0.8 is considered strong,” the press release notes.

The researchers published their findings in the Journal of Clinical Oncology.

Using Genomics to Identify Cancer-Causing Mutations

In what has been described as the “largest study of whole genome sequencing data,” researchers at the University of Cambridge in the UK announced they have discovered a “treasure trove” of information about possible causes of cancer.

Using data from England’s 100,000 Genomes Project, the researchers analyzed the whole genome sequences of 12,000 NHS cancer patients.

This allowed them “to detect patterns in the DNA of cancer, known as ‘mutational signatures,’ that provide clues about whether a patient has had a past exposure to environmental causes of cancer such as smoking or UV light, or has internal, cellular malfunctions,” according to a press release.

The researchers also identified 58 new mutational signatures, “suggesting that there are additional causes of cancer that we don’t yet fully understand,” the press release states.

The study appeared in April 2022 in the journal Science.

Validation of CAR-T-Cell Therapy

CAR-T-cell therapy “involves removing and genetically altering immune cells, called T cells, from cancer patients,” WEF explained. “The altered cells then produce proteins called chimeric antigen receptors (CARs), which can recognize and destroy cancer cells.”

The therapy appeared to receive validation in 2022 when researchers at the University of Pennsylvania published an article in the journal Nature noting that two early recipients of the treatment were still in remission after 12 years.

However, the US Food and Drug Administration (FDA) announced in 2023 that it was investigating reports of T-cell malignancies, including lymphoma, in patients who had received the treatment.

WEF observed that “the jury is still out as to whether the therapy is to blame but, as a precaution, the drug packaging now carries a warning.”

Breast Cancer Drug Repurposed for Prevention

England’s NHS announced in 2023 that anastrozole, a breast cancer drug, will be available to post-menopausal women to help reduce their risk of developing the disease.

“Around 289,000 women at moderate or high risk of breast cancer could be eligible for the drug, and while not all will choose to take it, it is estimated that if 25% do, around 2,000 cases of breast cancer could potentially be prevented in England, while saving the NHS around £15 million in treatment costs,” the NHS stated.

The tablet, which is off patent, has been used for many years to treat breast cancer, the NHS added. Anastrozole blocks the body’s production of the enzyme aromatase, reducing levels of the hormone estrogen.

Big Advance in Treating Cervical Cancer

In October 2024, researchers announced results from a large clinical trial demonstrating that a new approach to treating cervical cancer—one that uses currently available therapies—can reduce the risk of death by 40% and the risk of relapsing by 36%.

Patients are commonly treated with a combination of chemotherapy and radiotherapy called chemoradiotherapy (CRT), according to Cancer Research UK. But outcomes are improved dramatically by administering six weeks of induction therapy prior to CRT, the researchers reported.

“This is the biggest improvement in outcome in this disease in over 20 years,” said Mary McCormack, PhD, clinical oncologist at the University College London and lead investigator in the trial.

The scientists published their findings in The Lancet.

Pathologists and clinical lab managers will want to keep track of these 12 breakthrough advancements in the diagnosis and treatment of cancer highlighted by the WEF. They will likely lead to new screening tests for the disease and could save many lives.

—Stephen Beale

Related Information:

Thousands of Cancer Patients to Trial Personalized Vaccines

England to Rollout World-First Seven-Minute Cancer Treatment Jab

MIT Researchers Develop an AI Model That Can Detect Future Lung Cancer Risk

Largest Study of Whole Genome Sequencing Data Reveals New Clues to Causes of Cancer

Tens of Thousands of Women Set to Benefit from ‘Repurposed’ NHS Drug to Prevent Breast Cancer

Cervical Cancer Treatment Breakthrough Cuts Risk of Death By 40%

England’s National Health Service to Offer Widespread Rapid Whole Genome Sequencing for Children and Babies

Research in the UK and US into how rapid WGS can prevent deaths and improve outcomes for kids with rare genetic diseases may lead to more genetic testing based in local clinical laboratories

Genetic scientists with the National Health Service (NHS) in England have embarked on an ambitious plan to offer rapid whole genome sequencing (rWGS) for children and babies with serious illnesses, as part of a larger initiative to embrace genomic medicine in the United Kingdom (UK).

The NHS estimates that the plan will benefit more than 1,000 children and babies each year, including newborns with rare diseases such as cancer, as well as kids placed in intensive care after being admitted to hospitals. Instead of waiting weeks for results from conventional tests, clinicians will be able to administer a simple blood test and get results within days, the NHS said in a press release.

The press release notes that about 75% of rare genetic diseases appear during childhood “and are responsible for almost a third of neonatal intensive care deaths.”

Here in the United States, pathologists and clinical laboratory managers should see this development as a progressive step toward expanding access to genetic tests and whole genome sequencing services. The UK is looking at this service as a nationwide service. By contrast, given the size of the population and geography of the United States, as this line of medical laboratory testing expands in the US, it will probably be centered in select regional centers of excellence.

The NHS laid out its implementation plan in a strategy paper published on NHS England’s website titled, “Accelerating Genomic Medicine in the NHS.”

“This strategy sets out how more people will be empowered to take preventative action following risk-based predictions, receive life-changing diagnoses, and get the support needed to live with genomically-informed diagnoses alongside improved access to cutting-edge precision [medicine] treatments. It also outlines how the NHS will accelerate future high-quality genomic innovation that can be adopted and spread across the country, leading to positive impacts for current and future generations,” the NHS wrote.

Amanda Pritchard

“This global first is an incredible moment for the NHS and will be revolutionary in helping us to rapidly diagnose the illnesses of thousands of seriously ill children and babies—saving countless lives in the years to come,” said NHS chief executive Amanda Pritchard (above) in a press release announcing the program. (Photo copyright: Hospital Times.)

New Rapid Whole Genome Sequencing Service

The NHS announced the plan following a series of trials last year. In one trial, a five-day old infant was admitted to a hospital in Cheltenham, Gloucester, with potentially deadly levels of ammonia in his blood. Whole genome sequencing revealed that changes in the CPS1 gene were preventing his body from breaking down nitrogen, which led to the spike in ammonia. He was given life-saving medication in advance of a liver transplant that doctors believed would cure the condition. Without the rapid genetic test, doctors likely would have performed an invasive liver biopsy.

Following sample collection at NHS locations, the genetic tests will be performed at the new National Rapid Whole Genome Sequencing Service, part of the South West NHS Genomic Laboratory Hub run by the Royal Devon University Healthcare NHS Foundation Trust in Exeter, UK.

Using a simple blood test, the new newborn genetic screening service in England is expected to benefit more than 1,000 critically ill infants each year, potentially saving their lives. “The rapid whole genome testing service will transform how rare genetic conditions are diagnosed,” explained Emma Baple, PhD, Professor of Genomic Medicine at University of Exeter Medical School and leader of the National Rapid Whole Genome Sequencing Service in the press release. “We know that with prompt and accurate diagnosis, conditions could be cured or better managed with the right clinical care, which would be life-altering—and potentially life-saving—for so many seriously unwell babies and children,” Precision Medicine Institute reported.

According to The Guardian, test results will be available in two to seven days.

Along with the new rWGS testing service, the NHS announced a five-year plan to implement genomic medicine more broadly. The provisions include establishment of an ethics advisory board, more training for NHS personnel, and an expansion of genomic testing within the existing NHS diagnostic infrastructure. The latter could include using NHS Community Diagnostics centers to collect blood samples from family members to test for inherited diseases.

UK’s Longtime Interest in Whole Genome Sequencing

The UK government has long been interested in the potential role of WGS for delivering better outcomes for patients with genetic diseases, The Guardian reported.

In 2013, the government launched the 100,000 Genomes Project to examine the usefulness of the technology. In November 2021, investigators with the project reported the results of a large pilot study in which they analyzed the genomes of 4,660 individuals with rare diseases. The study, published in the New England Journal of Medicine (NEJM) titled, “100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care—Preliminary Report,” found “a substantial increase in yield of genomic diagnoses made in patients with the use of genome sequencing across a broad spectrum of rare disease.”

The study’s findings suggest that use of WGS “could save the NHS millions of pounds,” The Guardian reported.

Whole Genome Sequencing System for Newborns in the US

Researchers in the United States are also looking at the potential for WGS to improve health outcomes in children with genetic conditions. Last August, a research team led by Stephen F. Kingsmore, MD, DSc, President/CEO of Rady Children’s Institute for Genomic Medicine in San Diego, authored a study published in the American Journal of Human Genetics (AJHG) titled, “A Genome Sequencing System for Universal Newborn Screening, Diagnosis, and Precision Medicine for Severe Genetic Diseases,” that described a scalable prototype for a newborn screening system.

“This NBS-rWGS [newborn screening by rapid whole genome sequencing] system is designed to complement the existing newborn screening process and has the potential to eliminate the diagnostic and therapeutic odyssey that many children and parents face,” Kingsmore said in a press release. “Currently, only 35 core genetic disorders are recommended for newborn screening in the United States, but there are more than 7,200 known genetic diseases. Outcomes remain poor for newborns with a genetic disease because of the limited number of recommended screenings. With NBS-rWGS, we can more quickly expand that number and therefore potentially improve outcomes through precision medicine.”

A more recent 2023 study which examined 112 infant deaths at Rady Children’s Hospital found that 40% of the babies had genetic diseases. In seven infants, genetic diseases were identified post-mortem, and in five of them “death might have been avoided had rapid, diagnostic WGS been performed at time of symptom onset or regional intensive care unit admission,” the authors wrote.

“Prior etiologic studies of infant mortality are generally retrospective, based on electronic health record and death certificate review, and without genome information, leading to underdiagnosis of genetic diseases,” said Christina Chambers, PhD, co-author of the study, in a press release. “In fact, prior studies show at least 30% of death certificates have inaccuracies. By implementing broad use of genome sequencing in newborns we might substantially reduce infant mortality.” 

Pioneering work with whole genome sequencing for newborns, such as that being conducted by the clinical laboratory and genetic teams at Rady Children’s Hospital and the UK’s NHS, could allow doctors to make timely interventions for our most vulnerable patients.

—Stephen Beale

Related Information:

Study Suggests DNA Sequencing Could Reduce Infant Deaths, Often Caused by Genetic Disease

Novel Newborn Screening System Uses Rapid Whole Genome Sequencing and Acute Management Guidance to Screen and Diagnosis Genetic Diseases

Study Finds Association of Genetic Disease and Infant Mortality Higher than Previously Recognized: 41% of Infant Deaths Associated with Genetic Diseases

Genome Sequencing Could Prevent Infant Deaths

A Genome Sequencing System for Universal Newborn Screening, Diagnosis, and Precision Medicine for Severe Genetic Diseases

Genetic Testing in the PICU Prompts Meaningful Changes in Care

Major Policy Event in United Kingdom Aligns National Genetic Screening Program Using Rapid Whole Genome Sequencing

World-First National Genetic Testing Service to Deliver Rapid Life-Saving Checks for Babies and Kids

Genome Sequencing Trial to Test Benefits of Identifying Genetic Diseases at Birth

New NHS Genetic Testing Service ‘Could Save Thousands of Children’ in England

NHS England Completes Move Towards Rapid Whole Genome Sequencing of All Critically Ill Infants

Whole Genome Sequencing for Children: An Information Guide for Parents, Carers, and Families

;