How Will Clinical Laboratories Collect Samples if Telehealth Replaces Traditional Doctor’s Office Visits?

COVID-19 has made telehealth an important tool. New technologies may help clinical laboratories collect blood samples ordered by physicians treating patients remotely

Even before COVID-19, telehealth services were gaining in popularity. But the SARS-CoV-2 pandemic fully opened the door to widespread use of mobile healthcare (mHealth) technologies. This has had an on-going impact on clinical laboratories.

Pre-pandemic, if a patient visited a healthcare provider and that provider ordered medical laboratory tests, the patient could simply walk down the hall to the lab’s patient service center and provide a blood sample. But when patients and providers meet through telehealth services, it is not so easy for lab personnel to collect samples for testing.

Several questions face healthcare providers and clinical laboratories as the pandemic subsides:

  • Will telehealth remain popular?
  • Does it benefit patient care?
  • Can physicians fit it into their workflows?
  • Will it continue to be reimbursed fairly?

COVID-19 Gives Telehealth Adoption a Big Boost

Telemedicine became important very quickly as SARS-CoV-2 coronavirus infections spread in early 2020. And not just in the United States. Clinicians worldwide began to embrace mHealth technology as a method of delivering care in a way that reduced the transmission of the virus.

The number of telemedicine consultations has declined since April 2020 but continues to be significantly higher than before the pandemic. It is also interesting to note that 90% of telemedicine visits were by phone in Australia and Canada, according to an article published in JAMA Network, titled, “Paying for Telemedicine After the Pandemic.”

Ateev Mehrotra, MD, MPH (above), Associate Professor of Health Care Policy, Harvard Medical School, and Associate Professor of Medicine and Hospitalist, Beth Israel Deaconess Medical Center (BIDMC) headshot image
“At its peak in April 2020, telemedicine was responsible for 38% of all ambulatory visits among Australia’s Medicare program, 42% of all ambulatory visits for individuals insured by a US commercial insurer, and 77% of all ambulatory visits among people in Ontario, Canada,” wrote Ateev Mehrotra, MD, MPH (above), Associate Professor of Health Care Policy, Harvard Medical School, and Associate Professor of Medicine and Hospitalist, Beth Israel Deaconess Medical Center (BIDMC), et al, in the Jama Network article. Clinical laboratory testing was part of all of that and continues to find its way in this new world of mobile healthcare. (Photo copyright: Managed Healthcare Executive.)

Telehealth Popular with Community Health Centers but Disparities Remain

In “Community Health Centers Lead in Telehealth Adoption During Pandemic,” the National Association of Community Health Centers, (NACHC) reported that, in the US, 98% of community health centers used telehealth services.

One of the big issues with telehealth, according to the NACHC, is that not all patients have access to the technology necessary for telehealth to be a viable alternative to traditional office visits. And that patients who use NACHC clinics tend to be “low income, minority, and uninsured or publicly insured.”

Thus, the NACHC lists “inadequate broadband” as one of the biggest issues regarding the continued use of telehealth. “Patients without reliable internet or the necessary technology still face difficulties accessing services, which has resulted in forgone or delayed care,” the NACHC noted.

A study, titled, “Who Is (and Is Not) Receiving Telemedicine Care During the COVID-19 Pandemic,” published in the American Journal of Preventative Medicine (AJPM), confirms the findings of the NACHC. “The COVID-19 pandemic has affected telehealth utilization disproportionately based on patient age, and both county-level poverty rate and urbanicity.”

Although in-person visits declined by 50%, the AJPM study’s authors noted that telehealth did not completely bridge the gap, particularly in areas where there were higher levels of poverty.

Physician Practices Are Businesses Too

The pandemic hurt businesses of all types, including independent physician’s offices. Approximately 8% of practices closed due to the pandemic, and 4% expect they will shut down within the next year. Along with the financial burden of shutdowns, physicians are burning out, Fast Company reported.

Organizations now have the technology in place and some patients have learned to utilize the service. However, the situation does raise important questions:

  • Will telehealth remain a critical component of healthcare in the future?
  • As physician’s offices close, will telehealth fill the gap?

Telehealth and Payment

Becker’s Hospital Review asked nine hospital CIOs if telehealth would “have staying power.” Every executive mentioned either reimbursement or payers in their response. Therefore, whether telehealth remains a viable method of care delivery may depend more on who will pay for it and less on popularity or patient access.

During the COVID-19 pandemic, CMS revised the rules surrounding telehealth. This allowed practitioners to charge the same for telehealth visits as they would for in-person visits. Many private payers followed suit as well. However, those rules were temporary and it is not certain that they will be extended.

“Payers must continue to reimburse for telehealth visits,” Mark Amey, CIO, Alameda Health System, told Becker’s Hospital Review. “This has been approved with emergency orders, but there are questions on whether this will become permanent. The sooner this is addressed and resolved, the sooner organizations can make sure they are investing in permanent—not temporary—solutions.”

How Does This Affect Clinical Laboratories?

In “COVID-19 Is a Catalyst for Remote Sampling and Telemedicine,” the American Association for Clinical Chemistry (AACC) examined the trend toward at-home testing.

Tests that use nasal swabs and saliva have seen an enormous boom thanks to demand for COVID-19 testing that can be done at home, and COVID-19 antibody tests also are in high demand. Additionally, direct-to-consumer (DTC) tests that use blood samples also are seeing advancements. However, none of those factors—not even reimbursement—help medical laboratory managers who are trying to identify new methods of collecting specimens for testing that support telehealth doctors.

“Innovations in blood sample collection are proving their utility and validity just in time for the home-based medicine push,” noted the AACC. The article goes on to describe Mitra microsampling devices, produced by Neoteryx. These devices collect 20 uL of blood via a finger prick and are already used by organ transplant recipients.

Another method involves the use of dried blood spots.

Though COVID-19 is a factor, it is not the only one driving development of new healthcare technologies that may expand options for medical laboratories looking for ways to collect samples remotely.

In “‘There’s an App for That’ is Becoming the Norm in Healthcare as Smartphones Provide Access to Patient Medical Records and Clinical Laboratory Test Results,” Dark Daily looked at smartphone apps in mobile health (mHealth) that monitor patients’ conditions and report results to doctors. And in “McKinsey and Company Says the COVID-19 Pandemic is Accelerating Six Critical Trends in Healthcare, at Least One Which Would Benefit Anatomic Pathologists,” we noted that Telehealth was among several critical trends in healthcare accelerated by the COVID-19 pandemic, and how the pandemic is reshaping healthcare, especially in the realm of mobile healthcare technology.

As the COVID-19 pandemic progresses, we will continue to bring you news about healthcare technology that can enhance clinical laboratories’ ability to collect patient samples, include advancements in remote sampling techniques and technologies.

—Dava Stewart

Related Information:

Paying for Telemedicine After the Pandemic

Community Health Centers Lead in Telehealth Adoption During Pandemic

Who Is (and Isn’t) Receiving Telemedicine Care During the COVID-19 Pandemic

As Thousands of Doctors’ Offices Shutter, Telehealth Becomes a Way of Life

Will Telehealth Have Staying Power After the Pandemic? 9 CIOs Weigh In

COVID-19 Is a Catalyst for Remote Sampling and Telemedicine

“There’s an App for That” Is Becoming the Norm in Healthcare as Smartphones Provide Access to Patient Medical Records and Clinical Laboratory Test Results

McKinsey and Company Says the COVID-19 Pandemic Is Accelerating Six Critical Trends in Healthcare, at Least One Which Would Benefit Anatomic Pathologists

Guidehouse Healthcare Experts Outline Six Ways COVID-19 Pandemic Is Accelerating Healthcare Transformation

UK Researchers Create Analytical Algorithm That Identifies Patients with Advanced Liver Disease by Analyzing Routine Clinical Laboratory Blood Test Results

By mining results of unrelated blood tests, the CIRRUS algorithm can inform doctors and patients earlier than usual of liver disease

For years Dark Daily and its sister publication The Dark Report have predicted that the same type of analytical software used on Wall Street to analyze bundles of debt, such as car loans, mortgages, and installment loans, would eventually find application in healthcare and clinical laboratory medicine. Now, researchers at the University of Southampton in England have developed just such an analytical tool.

The UK researchers call their algorithm CIRRUS, which stands for CIRRhosis Using Standard tests. It can, they say, accurately predict if a patient has cirrhosis of the liver at a much earlier stage than usual and produce information that is clinically actionable, using results from several common, routinely-ordered medical laboratory tests.

The University of Southampton scientists published their findings in BMJ Open.

Currently, the leading edge for this in clinical laboratory medicine is analysis of digital pathology images using image analysis tools and artificial intelligence (AI). However, CIRRUS is an example that analytical software is advancing in its ability to mine data from a number of clinically-unrelated lab tests on a patient and identify a health condition that might otherwise remain unknown.

The UK researchers designed the CIRRUS algorithm using routine clinical laboratory blood tests often requested in general practice to identify individuals at risk of advanced liver disease. These tests include:

Reversing Liver Disease through Lifestyle Changes

“More than 80% of liver cirrhosis deaths are linked to alcohol or obesity and are potentially preventable,” noted Nick Sheron, MD, FRCP, Head of Population Hepatology at University of Southampton, and lead author of the study, in a press release. “However, the process of developing liver cirrhosis is silent and often completely unsuspected by GPs [general practitioners]. In 90% of these patients, the liver blood test that is performed is normal, and so liver disease is often excluded.

“This new CIRRUS algorithm can find a fingerprint for cirrhosis in the common blood tests done routinely by GPs,” he continued. “In most cases the data needed to find these patients already exists and we could give patients the information they need to change their lifestyle. Even at this late stage, if people address the cause by stopping drinking alcohol or reducing their weight, the liver can still recover.”

Mining Clinical Laboratory Blood Test Results

To perform the study, the research team analyzed data on blood test results for nearly 600,000 patients. Unlike most diagnostic liver algorithms, the CIRRUS model was created using a dataset comprised of patients from both primary and secondary care without the main intent of preselecting for liver disease. This renders it better suited for detecting liver disease outside a secondary care hepatology environment.

“Whilst we are all preoccupied with the coronavirus pandemic we must not lose sight of other potentially preventable causes of death and serious illness,” said Michael Moore, BM, BS, MRCP, FRCGP, Professor of Primary Health Care Research and Head of Academic Unit Primary Care and Population Sciences at University of Southampton, in the press release. Professor Moore co-authored the CIRRUS study.

“This test using routine blood test data available, gives us the opportunity to pick up serious liver disease earlier, which might prevent future emergency admission to hospital and serious ill health,” he said.

Cirrhosis micrograph showing scaring of liver tissue
Cirrhosis (shown above in a trichrome stained micrograph) is a condition in which the liver is scarred and permanently damaged. As the condition progresses, more scar tissue replaces healthy liver tissue. This accumulated scar tissue prevents the liver from doing its primary job of regulating chemical levels in the blood and excreting bile, a substance which helps eliminate toxins from the body and breaks down fats during digestion. As cirrhosis worsens, the liver begins to fail. (Photo copyright: Wikipedia.)

According to the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), cirrhosis is most common in adults ages 45 to 54 and about 1 in 400 adults in the US live with the disease. However, the actual number may be much higher as many people are not aware they have cirrhosis, because they do not experience symptoms until the liver is badly damaged. 

The NIDDK reports complications from cirrhosis include:

  • Portal Hypertension, a condition where scar tissue partially blocks the normal flow of blood through the liver,
  • Infections,
  • Liver Cancer,
  • Liver Failure,
  • Bone diseases, such as osteoporosis,
  • Gallstones,
  • Bile duct issues,
  • Malabsorption and malnutrition,
  • Bruising and bleeding easily,
  • Sensitivity to medicines,
  • Insulin resistance, and
  • Type 2 diabetes.

“Liver cirrhosis is a silent killer. The tests used most by GPs are not picking up the right people and too many people are dying preventable deaths. We looked at half a million anonymous records and the data we needed to run CIRRUS was already there in 96% of the people who went on to have a first liver admission,” stated Sheron in the press release. “With just a small change in the way we handle this data it should be possible to intervene in time to prevent many of these unnecessary deaths.”

“Alcohol-related liver diseases are far and away the most significant cause of alcohol-specific deaths, yet currently the vast majority of people find out that their liver is diseased way too late,” said Richard Piper, PhD, Chief Executive of Alcohol Change UK, a British charity and campaign group dedicated to reducing harm caused by alcohol abuse. “What is needed is a reliable means of alerting doctors and their patients to potential liver disease as early as possible. The CIRRUS process shows real promise, and we want to see it further developed, tested and implemented, to help save hundreds of thousands, if not millions, of lives.”

CIRRUS is a true milestone in the development of computer-assisted healthcare diagnostics. It will need more research, but the University of Southampton study shows that analytical software tools can mine clinical laboratory test results that were ordered for unrelated diagnostics and identify existing health conditions that might otherwise remain hidden to the patient’s physicians.

—JP Schlingman

Related Information:

Routine Blood Tests Could Be Key to Stopping the Silent Killer of Liver Disease

Can Routine Blood Tests be Modelled to Detect Advanced Liver Disease in the Community: Model Derivation and Validation Using UK Primary and Secondary Care Data

New Algorithm Can Predict Advanced Liver Disease

Routine Blood Tests Contain ‘Hidden Fingerprint’ Indicating Liver Cirrhosis

University of British Columbia Clinical Laboratory Proficiency Testing Program Adds COVID-19 Quality Assessments, Endows Chair

COVID-19 pandemic has brought many non-traditional medical laboratory participants into UBC’s CMPT proficiency testing program

When Canada’s British Columbia Center for Disease Control (BCCDC) saw the increasing demand for of COVID-19 tests and responsibilities headed its way, it reached out to a well-regarded proficiency testing program for help. The public health agency turned to the University of British Columbia’s (UBC) Clinical Microbiology Proficiency Testing (CMPT) Program.

Since the early 1980s, UBC’s CMPT program, led by medical microbiologist Michael Noble, MD, has provided external quality assessment (EQA) for clinical microbiology and water testing laboratories. This includes providing biological samples related to:

But COVID-19 changed everything.

“Typical of every jurisdiction in North America and probably around the world, BCCDC got swamped beyond swamped,” said Noble, the Clinical Microbiology Proficiency Testing (CMPT) program’s first and current Chair, in an exclusive interview with Dark Daily. “The increase was 10-fold, and they were unable to provide all the services they wanted to do. And since I was already running a proficiency testing program across the province, they asked if I would provide that service for COVID-19 for laboratories that were doing the testing.”

Michael Noble, MD of UBC sits in his laboratory
Michael Noble, MD (above), is Professor Emeritus (active) in UBC’s Department of Pathology and Laboratory Medicine and Chair of the Program Office for Laboratory Quality Management (POLQM). He began his career as a medical microbiologist but soon focused on laboratory quality management. Within the Department of Pathology and Laboratory Medicine, Noble co-developed the Clinical Microbiology Proficiency Testing (CMPT) program in 1983, a program he still chairs but will soon pass on to a new leader. (Photo copyright: University of British Columbia.)

CMPT’s Proficiency Testing Serves Labs Worldwide

UBC’s CMPT external quality assessment (EQA) program serves all medical laboratories in British Columbia, as well as other labs in Canada, Europe, South America, and the Caribbean. Just over 200 laboratories currently participate in the program. More labs participated in past years, before lab consolidation affected CMPT and other programs as well, Noble said.

CMPT’s proficiency testing ensures that participant laboratories that have been provided with simulated samples can perform tests at the “level of quality and competence required,” notes UBC’s CMPT website.

“Samples are complex, highly realistic, and clinically relevant. CMPT samples contain host elements as well as targeted pathogens,” Noble explained on his blog, “Making Medical Laboratory Quality Relevant.”

COVID-19 Brings Non-Traditional ‘Laboratories’ to CMPT’s Proficiency Testing Program

UBC’s proficiency testing for SARS-CoV-2, the coronavirus that causes the COVID-19 infection, differs from other CMPT programs. That’s due to new participants that entered the laboratory testing program during the COVID-19 pandemic that are performing COVID-19 testing in non-traditional locations, Noble stated.

“In our proficiency programs, we had mainly been dealing with traditional clinical laboratories,” Noble explained. “But now, we find people doing COVID-19 testing—even though defined as medical laboratories—who are working in airports, or in tourism, or the movie industry, or forestry. They may never have worked in an actual clinical laboratory. So, it’s a very different style of proficiency testing. There has been a lot of handholding, teleconferences, discussions, and one-on-ones with that group,” Noble said.

UBC’s COVID-19 Proficiency Testing Program for PCR and rapid antigen tests recently began serving public and private facilities. Three samples per shipment are being released by UBC every two months.

Participant laboratories receive viral material that “simulates typical samples.” They need to demonstrate proficiency by performing the test and reporting it as positive, negative, or inconclusive.

“Our product is derived from a pure culture of a single strain of SARS-CoV-2, and it appears to be effective for all targets,” Noble stated.

Detecting COVID-19 by Gargling and Rinsing

UBC’s program typically offers simulated sampling for detection of SARS-CoV-2 in nasopharyngeal swabs. However, the BC Center for Disease Control’s (BCCDC) mouth rinse and gargle sample collection for diagnosis of COVID-19 also is available and widely used in Canada, Noble said.

In fact, a Vancouver-based study published in the Journal of Clinical Microbiology, titled, “Self-Collected Saline Gargle Samples as an Alternative to Health Care Worker-Collected Nasopharyngeal Swabs for COVID-19 Diagnosis in Outpatients,” found mouth rinse testing just as effective as nose swab samples in detection of the novel coronavirus, the Vancouver Sun reported.

Qualitology is Imperative to Medical Laboratories

In his career, Noble transitioned from medical microbiology to qualitology, which he describes as “the study of quality in the medical laboratory.”

In stressing the importance of laboratory quality testing, Noble describes the possibility of laboratory testing going awry and leading to a microbiological public health emergency.

“What happens if there’s a stool sample, and someone misses the presence of Campylobacteriosis in the stool? What happens if that’s part of a foodborne disease and there’s an outbreak in the city and samples are being missed? How many people will be impacted as a result of that error?” he asked.

University of British Columbia Endows a Chair for Laboratory Quality Management

Noble says UBC’s Program Office for Laboratory Quality Management (POLQM) has involved organizations worldwide and certified more than 500 people.

“The impact they have over their laboratories has been huge. Maybe that would have happened without us. But we were a part of that. And our impact is not one laboratory or one city or one province but widespread, and that’s a real and enriching experience to have,” he said.

But now it is time for him to move on. Noble secured (through UBC), a benefactor to establish the endowed Chair for Laboratory Quality Management. The family of the late Donald B. Rix, MD, a Canadian pathologist and philanthropist, gave $1.5 million (matched by the university) to create the Associate Professor (Grant Tenure) Donald B. Rix Professorship in Laboratory Quality at UBC, Department of Pathology and Laboratory Medicine.

Long-serving pathologists and medical laboratory professionals may remember that Rix was the founder and chair of MDS Metro Laboratory Services (now known as LifeLabs Medical Laboratory Services). It grew into the largest private medical laboratory in Western Canada.

Referring to this endowed new Chair for Laboratory Quality Management, Noble said, “I think this is the first named position of laboratory quality in North America.” UBC has commenced reviewing applications for the position, which is expected to be effective in January 2022. Pathologists and clinical laboratory scientists with appropriate qualifications and interest in this position should contact Dr. Noble’s office at the University of British Columbia Faculty of Medicine.

—Donna Marie Pocius

Related Information:

Clinical Microbiology Proficiency Testing Program 2020

Self-Collected Saline Gargle Samples as an Alternative to Healthcare Worker-Collected Nasopharyngeal Swabs for COVID-19 Diagnosis in Outpatients

COVID-19 Mouth Rinse Test Gets Same Results as Nose Swab: BC StudyClinical Laboratory Scientist in British Columbia Gets Recognition for Identifying the Province’s First Case of COVID-19

Virginia Commonwealth University Scientists Combine dPCR and High-Speed Microscopic Imaging to Reduce Cost of Diagnosing Cancers

VCU scientists used the technique to measure mutations associated with acute myeloid leukemia, potentially offering an attractive alternative to DNA sequencing

More accurate but less-costly cancer diagnostics are the Holy Grail of cancer research. Now, research scientists at Virginia Commonwealth University (VCU) say they have developed a clinical laboratory diagnostic technique that could be far cheaper and more capable than standard DNA sequencing in diagnosing some diseases. Their method combines digital polymerase chain reaction (dPCR) technology with high-speed atomic force microscopy (HS-AFM) to generate nanoscale-resolution images of DNA.

The technique allows the researchers to measure polymorphisms—variations in gene lengths—that are associated with many cancers and neurological diseases. The VCU scientists say the new technique costs less than $1 to scan each dPCR reaction.

The researchers used the technique to measure and quantify polymorphisms associated with mutations in the FLT3 gene. Cancer researchers have linked these mutations, known as internal tandem duplications (ITDs), to a poor prognosis of acute myeloid leukemia (AML) and a more aggressive form of the disease, Nature Leukemia noted in “Targeting FLT3 Mutations in AML: Review of Current Knowledge and Evidence.”

“We chose to focus on FLT3 mutations because they are difficult to [diagnose], and the standard assay is limited in capability,” said physicist Jason Reed, PhD, Assistant Professor in the Virginia Commonwealth University Department of Physics, in a VCU press release.

Reed is an expert in nanotechnology as it relates to biology and medicine. He led a team that included other researchers in VCU’s physics department as well as physicians from VCU Massey Cancer Center and the Department of Internal Medicine at VCU School of Medicine.

Jason Reed, PhD with Andrey Mikheikin, PhD, on left and Sean Koebley, PhD, on right in a press release from Virginia Commonwealth University (VCU)
“The technology needed to detect DNA sequence rearrangements is expensive and limited in availability, yet medicine increasingly relies on the information it provides to accurately diagnose and treat cancers and many other diseases,” said Jason Reed, PhD (above center, with Andrey Mikheikin, PhD, on left and Sean Koebley, PhD, on right), in a press release from Virginia Commonwealth University (VCU). “We’ve developed a system that combines a routine laboratory process with an inexpensive yet powerful atomic microscope that provides many benefits over standard DNA sequencing for this application, at a fraction of the cost.” (Photo copyright: Virginia Commonwealth University.)

Validating the Clinical Laboratory Test

The physicists worked with two VCU physicians—hematologist/oncologist Amir Toor, MD, and hematopathologist Alden Chesney, MD—to compare the imaging technique to the LeukoStrat CDx FLT3 Mutation Assay, which they described as the “current gold standard test” for diagnosing FLT3 gene mutations.

The researchers said their technique matched the results of the LeukoStrat test in diagnosing the mutations. But unlike that test, the new technique also can measure variant allele frequency (VAL). This “can show whether the mutation is inherited and allows the detection of mutations that could potentially be missed by the current test,” states the VCU press release.

The VCU researchers published their findings in ACS Nano, a journal of the American Chemical Society (ACS), titled, “Digital Polymerase Chain Reaction Paired with High-Speed Atomic Force Microscopy for Quantitation and Length Analysis of DNA Length Polymorphisms.” They also presented their findings at the annual meetings of the Association of Molecular Pathology (AMP) and American Society of Hematology (ASH).

“We plan to continue developing and testing this technology in other diseases involving DNA structural mutations,” Reed said. “We hope it can be a powerful and cost-effective tool for doctors around the world treating cancer and other devastating diseases driven by DNA mutations.”

How the New Diagnostic Technique Works

Sean Koebley, PhD, Postdoctoral Fellow at Virginia Commonwealth University and another member of the VCU research team, described the new diagnostic technique in a video produced for the ASH and AMP meetings.

“In our approach we first used digital PCR, in which a mixed sample is diluted to less than one target molecule per aliquot and the aliquots are amplified to yield homogeneous populations of amplicons,” he said. “Then, we deposited each population onto an atomically-flat partitioned surface.”

The VCU researchers “scanned each partition with high-speed atomic force microscopy, in which an extremely sharp tip is rastered across the surface, returning a 3D map of the surface with nanoscale resolution,” he said. “We wrote code that traced the length of each imaged DNA molecule, and the distribution of lengths was used to determine whether the aliquot was a wild type [unmutated] or variant.”

In Diagnostics World, Reed said the method “doesn’t really have any more complexity than a PCR assay itself. It can easily be done by most lab technicians.”

Earlier Research

A VCU press release from 2017 noted that Reed’s research team had developed technology that uses optical lasers (similar to those in a DVD player) to accelerate the scanning. The researchers previously published a study about the technique in Nature Communications, and a patent is currently pending.

“DNA sequencing is a powerful tool, but it is still quite expensive and has several technological and functional limitations that make it difficult to map large areas of the genome efficiently and accurately,” Reed said in the 2017 VCU press release. “Our approach bridges the gap between DNA sequencing and other physical mapping techniques that lack resolution. It can be used as a stand-alone method or it can complement DNA sequencing by reducing complexity and error when piecing together the small bits of genome analyzed during the sequencing process.”

Using CRISPR technology, the team also developed what they described as a “chemical barcoding solution,” placing markers on DNA molecules to identify genetic mutations.

New DNA Clinical Laboratory Testing?

Cancer diagnostics are constantly evolving and improving. It is not clear how long it will be before VCU’s new technique will reach clinical laboratories that perform DNA testing, if at all. But VCU’s new technique is intriguing, and should it prove viable for clinical diagnostic use it could revolutionize cancer diagnosis. It is a development worth watching.

—Stephen Beale

Related Information:

VCU Technology Could Upend DNA Sequencing for Diagnosing Certain DNA Mutations

A Team Led by a VCU Physicist Has Developed a Revolutionary Imaging Technique to Map DNA Mutations

Low-Cost Approach to Detecting DNA Rearrangement Mutations

Targeting FLT3 Mutations in AML: Review of Current Knowledge and Evidence

System, Method, Computer-Accessible Medium and Apparatus for DNA Mapping

Digital Polymerase Chain Reaction Paired with High-Speed Atomic Force Microscopy for Quantitation and Length Analysis of DNA Length Polymorphisms

Internal Tandem Duplications of the FLT3 Gene Are Present in Leukemia Stem Cells

Researchers at Washington University in St. Louis Use Microneedle Patch with Fluorescent Nanolabels to Detect Biomarkers in Skin’s Interstitial Fluid

Painless technology could one day replace some phlebotomy blood draws as the go-to specimen-collection method for clinical laboratory testing and health monitoring

Clinical laboratories have long sought a non-invasive way to do useful medical laboratory testing without the need for either a venipuncture or a needle stick. Now engineers at the McKelvey School of Engineering at Washington University in St. Louis in Missouri have developed a disposable microneedle patch that one day could be a painless alternative to some blood draws for diagnostics tests and health monitoring.

The technology uses an easy-to-administer low-cost patch that can be applied to the skin like an adhesive bandage. The patch is virtually painless because the microneedles are too small to reach nerve receptors. Another unique aspect to this innovative approach to collecting a specimen for diagnostic testing is that the Washington University in St. Louis (WashU) research team designed the microneedle patch to include plasmonic-fluor. These are ultrabright gold nanolabels that light up target protein biomarkers and can make the biomarkers up to 1,400 times brighter at low concentrations, compared to traditional fluorescent labels.

The patch, states a WashU news release, “… can be applied to the skin, capture a biomarker of interest and, thanks to its unprecedented sensitivity, allow clinicians to detect its presence.”

The technology is low cost, easy for clinicians or patients themselves to use, and could eliminate the need for a trip to patient service center where a phlebotomist would draw blood for clinical laboratory testing, the news release states.

Srikanth Singamaneni, PhD
“We have created a platform technology that anyone can use. And they can use it to find their own biomarker of interest,” study leader Srikanth Singamaneni, PhD (above), Lilyan and E. Lisle Hughes Professor in the Department of Mechanical Engineering and Materials Sciences at Washington University in St. Louis, said in the WashU news release. Singamaneni and his colleagues are developing a new specimen collection method that might someday be widely used by clinical laboratories. (Photo copyright: Washington University in St. Louis.)

The WashU researchers published their study, titled, “Microneedle Patch for the Ultrasensitive Quantification of Protein Biomarkers in Interstitial Fluid,” in the journal Nature Biomedical Engineering.

Minimally Invasive Specimen Collection

“We used the microneedle patch in mice for minimally invasive evaluation of the efficiency of a cocaine vaccine, for longitudinal monitoring of the levels of inflammatory biomarkers, and for efficient sampling of the calvarial periosteum [a skull membrane]—a challenging site for biomarker detection—and the quantification of its levels of the matricellular protein periostin, which cannot be accurately inferred from blood or other systemic biofluids,” the researchers wrote. “Microneedle patches for the minimally invasive collection and analysis of biomarkers in interstitial fluid might facilitate point-of-care diagnostics and longitudinal monitoring.”

Mark Prausnitz, PhD, Regents’ Professor, J. Erskine Love Jr. Chair in Chemical and Biomolecular Engineering, and Director of the Center for Drug Design, Development, and Delivery at Georgia Tech, told WIRED, “Blood is a tiny fraction of the fluid in our body. Other fluids should have something useful—it’s just hard to get those fluids.”

“Previously, concentrations of a biomarker had to be on the order of a few micrograms per milliliter of fluid,” said Zheyu (Ryan) Wang, a PhD candidate in Srikanth Singamaneni’s lab at McKelvey School of Engineering and a lead author of the paper, in the WashU news release. By using plasmonic-fluor, researchers were able to detect biomarkers on the order of picograms per milliliter—one millionth of the concentration.

“That’s orders of magnitude more sensitive,” Wang said.

plasmonic-fluor yellow spikes
Unlike blood, dermal interstitial fluid often does not contain high enough concentrations of biomarkers to be easily detectable. To overcome this hurdle, the Washington University in St. Louis research team developed a microneedle patch with plasmonic-fluor—ultrabright gold nanolabels (above)—which lit up target protein biomarkers, making them roughly 1,400 times brighter at low concentrations than when using traditional fluorescent labels commonly used in many medical laboratory tests. (Photo copyright: Washington University in St. Louis.)

Can Microneedles Be Used as a Diagnostic Tool?

As reported in WIRED, the polystyrene patch developed by Srikanth Singamaneni’s lab at McKelvey School of Engineering removes interstitial fluid from the skin and turns the needles into “biomarker traps” by coating them with antibodies known to bind to specific proteins, such as Interleukin 6 (IL-6). Once the microneedles are mixed with plasmonic-fluor, the patch will glow if the IL-6 biomarkers are present.

The development of such a highly sensitive biomarker-detection method means skin becomes a potential pathway for using microneedles to diagnose conditions, such as myocardial infarction or to measure COVID-19 antibodies in vaccinated persons.

“Now we can actually use this tool to understand what’s going on with interstitial fluid, and how we’re going to be able to use it to answer healthcare-related or medical problems,” Maral Mousavi, PhD, Assistant Professor of Biomedical Engineering, Viterbi School of Engineering at the University of Southern California, told WIRED. “I think it has the potential to be that kind of a game changer.”

Because the WashU study is a proof-of-concept in mice, it may be many years before this technology finds its way to clinical application. Many skin biomarkers will need to be verified for direct links to disease before microneedle patches will be of practical use to clinicians for diagnostics. However, microneedle patch technology has already proven viable for the collection of blood.

In 2017, Massachusetts-based Seventh Sense Biosystems (7SBio) received 510(k) clearance for a new microneedle blood collection device. Called TAP, the device is placed on the upper arm and blood collection starts with a press of a button. The process takes two to three minutes.

Initially, the FDA clearance permitted only healthcare workers to use the device “to collect capillary blood for hemoglobin A1c (HbA1c) testing, which is routinely used to monitor blood sugar levels in diabetic or pre-diabetic patients,” a Flagship Pioneering news release noted.

Then, in 2019, the FDA extended its authorization “to include blood collection by laypersons. Regulators are also allowing the device to be used ‘at-home’ for wellness testing,” a 7SBio news release stated. This opened the door for a microneedle device to be used for home care blood collection.

“No one likes getting blood drawn, but blood is the single-most important source of medical information in healthcare today, with about 90% of all diagnostic information coming from blood and its components,” Howard Weisman, former CEO of 7SBio and current CEO of PaxMedica, a clinical-stage biopharmaceutical company, said in the Flagship Pioneering news release. “TAP has the potential to transform blood collection from an inconvenient, stressful, and painful experience to one people can do themselves anywhere, making health monitoring much easier for both healthcare professionals and patients.”

As microneedle technology continues to evolve, clinical laboratories should expect patches to be used in a growing number of drug delivery systems and diagnostic tests. But further research will be needed to determine whether interstitial fluid can provide an alternate pathway for diagnosing disease.

—Andrea Downing Peck

Related Information:

Microneedle Patch for the Ultrasensitive Quantification of Protein Biomarkers in Interstitial Fluid

No More Needles

Forget Blood—Your Skin Might Know If You’re Sick

First-Ever Device for Fast and Virtually Painless Blood Draw Receives FDA Clearance

Microneedle Patch with Plasmonic Fluor, Ultrabright Gold Nanolables (IMAGE)

Microneedle Patch Could Replace Standard Tuberculosis Skin Test

Seventh Sense Biosystems Unlocks Market for Consumer Blood Collection Through Layperson Clearance

University of Washington Scientists Create ‘Smellicopter’ Drone That Uses a Live Moth Antenna to Hunt Down Odors

The palm-sized device could one day be engineered to track down explosives and gas leaks or could even be used by medical laboratories to detect disease

Here’s a technology breakthrough with many implications for diagnostics and clinical laboratory testing. Researchers at the at the University of Washington (UW) are pushing the envelope on what can be achieved by combining technology with biology. They developed “Smellicopter,” a flying drone that uses a living moth antenna to hunt for odors.

According to their published study, the UW scientists believe an odor-guided drone could “reduce human hazard and drastically improve performance on tasks such as locating disaster survivors, hazardous gas leaks, incipient fires or explosives.”

“Nature really blows our human-made odor sensors out of the water,” lead author Melanie Anderson, a UW doctoral student in mechanical engineering, told UW News. “By using an actual moth antenna with Smellicopter, we’re able to get the best of both worlds: the sensitivity of a biological organism on a robotic platform where we can control its motion.”

The researchers believe their Smellicopter is the first odor-sensing flying biohybrid robot system to incorporate a live moth antenna that capitalizes on the insect’s excellent odor-detecting and odor-locating abilities.

In their paper, titled, “A Bio-Hybrid Odor-Guided Autonomous Palm-Sized Air Vehicle,” published in the IOPscience journal Bioinspiration and Biomimetics, the researchers wrote, “Biohybrid systems integrate living materials with synthetic devices, exploiting their respective advantages to solve challenging engineering problems. … Our robot is the first flying biohybrid system to successfully perform odor localization in a confined space, and it is able to do so while detecting and avoiding obstacles in its flight path. We show that insect antennae respond more quickly than metal oxide gas sensors, enabling odor localization at an improved speed over previous flying robots. By using the insect antennae, we anticipate a feasible path toward improved chemical specificity and sensitivity by leveraging recent advances in gene editing.”

How Does it Work?

In nature, a moth uses its antennae to sense chemicals in its environment and navigate toward sources of food or a potential mate.

“Cells in a moth antenna amplify chemical signals,” said study co-author Thomas Daniel, PhD, UW Professor of Biology, in UW News. “The moths do it really efficiently—one scent molecule can trigger lots of cellular responses, and that’s the trick. This process is super-efficient, specific, and fast.”

Manduca sexta hawk moth close up on black background
To keep the moth antennae “alive,” scientists place Manduca sexta hawk moths (above) in a refrigerator to anesthetize them before removing their antennae. Once separated from the live moth, the antenna stays “biologically and chemically active” for up to four hours. Refrigerating the antennas further extends that time span, researchers explained in the UW News article. (Photo copyright: University of Washington.)

Because the moth antenna is hollow, researchers are able to add wires into the ends of the antenna. By connecting the antenna to an electrical circuit, they can measure the average signal from all of the cells in the antenna. When compared to a metal oxide gas sensor, the antenna-powered sensor responded more quickly to a floral scent. It also took less time to recover between tracking puffs of scent.

Anderson compared the antenna-drone circuitry to a human heart monitor.

“A lot like a heart monitor, which measures the electrical voltage that is produced by the heart when it beats, we measure the electrical signal produced by the antenna when it smells odor,” Anderson told WIRED. “And very similarly, the antenna will produce these spike-shaped pulses in response to patches of odor.”

Making a Drone Hunt Like a Moth

Anderson told WIRED her team programmed the drone to hunt for odors using the same technique moths employ to stay targeted on an odor, called crosswind casting.

“If the wind shifts, or you fly a little bit off-course, then you’ll lose the odor,” Anderson said. “And so, you cast crosswind to try and pick back up that trail. And in that way, the Smellicopter gets closer and closer to the odor source.”

However, the researchers had to figure out how to keep the commercially available $195 Crazyflie drone facing upwind. The fix, co-author and co-advisor Sawyer Fuller, PhD, UW Assistant Professor of Mechanical Engineering told UW News, was to add two plastic fins to create drag and keep the vehicle on course.

“From a robotics perspective, this is genius,” Fuller said. “The classic approach in robotics is to add more sensors, and maybe build a fancy algorithm or use machine learning to estimate wind direction. It turns out, all you need is to add a fin.”

Smellicopter drone image on a black background
A live moth antenna is attached to wires in an arc sharp on the “Smellicopter” drone (above), developed at the University of Washington in Seattle. The autonomous drone uses the moth antenna to navigate toward smells. By connecting the antenna to a circuit board, the UW researchers were able to study the drone’s response to a puff of floral scent. The Smellicopter tracking skills proved superior to that of a human-made sensor. (Photo copyright: University of Washington.)

Other Applications for Odor Detecting Robots

While any practical clinical application of this breakthrough is years away, the scientific team’s next step is to use gene editing to engineer moths with antennae sensitive to a specific desired chemical, such as those found in explosives.

“I think it is a powerful concept,” roboticist Antonio Loquercio, a PhD candidate in machine learning at the University of Zurich who researches drone navigation, told WIRED. “Nature provides us plenty of examples of living organisms whose life depends on this capacity. This could have as well a strong impact on autonomous machines—not only drones—that could use odors to find, for example, survivors in the aftermath of an earthquake or could identify gas leaks in a man-made environment.”

Could a palm-sized autonomous device one day be used to not only track down explosives and gas leaks but also to detect disease?

As clinical pathologists and medical laboratory scientists know, dogs have demonstrated keen ability to detect disease using their heightened sense of smell.

And on the human front, in “Woman Who Can Smell Parkinson’s Disease in Patients Even Before Symptoms Appear May Help Researchers Develop New Clinical Laboratory Test,” Dark Daily reported on the case of a Scottish woman who demonstrated the extraordinary ability to accurately smell Parkinson’s disease before clinical laboratory testing detected it.

Therefore, it is not inconceivable that smell-seeking technology might one day be part of clinical laboratory testing for certain diseases.

This latest research is another example of how breakthroughs in unrelated fields of science offer the potential for creation of diagnostic tools that one day may be useful to medical laboratories.

—Andrea Downing Peck

Related Information:

The Smellicopter Is an Obstacle-Avoiding Drone That Uses a Live Moth Antenna to Seek Out Smells

A Bio-hybrid Odor-guided Autonomous Palm-Sized Air Vehicle

This Drone Sniffs Out Odors with a Real Moth Antenna

Woman Who Can Smell Parkinson’s Disease in Patients Even Before Symptoms Appear May Help Researchers Develop New Clinical Laboratory Test