News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

GISAID hosts a vast, open database of genomic sequences of SARS-CoV-2 coronavirus samples, and medical laboratory scientists in countries across the globe are contributing

Clinical laboratories around the world have been contributing to the global scientific community’s database of knowledge about SARS-CoV-2, the coronavirus that caused the COVID-19 pandemic, and its variants, through an ingenious and crucial network known as GISAID. This cooperative sharing of the coronavirus’ genetic data (now four million genomic sequences strong) has greatly contributed to understanding the spread of infections and progress obtained in developing effective treatments and vaccines.

Headquartered in Munich, Germany, GISAID, which stands for Global Initiative on Sharing Avian Influenza Data, was created in 2008 during the Avian Influenza (Bird Flu) pandemic. The GISAID initiative promotes “the rapid sharing of data from all influenza viruses and the coronavirus causing COVID-19. This includes genetic sequence and related clinical and epidemiological data associated with human viruses, and geographical as well as species-specific data associated with avian and other animal viruses, to help researchers understand how viruses evolve and spread during epidemics and pandemics,” according to the GISAID website.

Clinical pathologists are likely familiar with GISAID. The initiative has become an indispensable tool for researchers battling SARS-CoV-2. GISAID allows scientists and organizations worldwide to upload genetic sequences of COVID-19 samples. Those sequences can then be used in research for treatments, vaccines, and to track emerging variants. The information is invaluable, freely available, and represents the collaborative efforts of scientists around the world in the fight against COVID-19 and other infectious diseases.

An article published in The World, titled, “From Congo to Chile, Small Labs Are Playing a Growing Role in Global Understanding of COVID,” noted that more than four million genomic sequences have been submitted as of October 15, 2021. The more countries around the world that submit sequences to GISAID, the more understanding scientists have of how the virus is mutating. And, as the cost of performing genomic sequencing declines, the number of countries submitting genomes of SARS-CoV-2 to GISAID is rising.

How GISAID Ensures Contributors Receive Credit for Their Work

One of the reasons that GISAID has been so successful in gathering data is that it requires anyone who uses data downloaded from the massive database to give credit to the person or organization who uploaded it. In other words, if a scientist in the United Kingdom (UK) does breakthrough research using genomes that were originally uploaded to GISAID by a scientist in the Congo, the UK scientist must credit the work of the scientist from the Congo.

Other genomic databases do not have this requirement and genetic researchers are often hesitant to share information due to fear their work will be co-opted by others. According to The World, scientists in lower income countries are particularly vulnerable to having their work appropriated.

Even worse is having one’s work appropriated, used to create a product, and then not being given access to that product.

Christian Happi, PhD

“Unfortunately, we’ve seen also the situation whereby people have leveraged that data and created the solution and refused to share the solution with those that shared the data,” virologist Christian Happi, PhD (above), who directs the African Center of Excellence for Genomics of Infectious Diseases (ACEGID) at Redeemer’s University in Nigeria, told The World. “And that is definitely going to roll back this whole open data sharing and access principle.” Happi is also a Visiting Scientist in the Department of Immunology and Infectious Diseases at Harvard’s T.H. Chan School of Public Health. (Photo copyright: Pius Utomi Ekpei/AFP/News 24.)

That is why GISAID’s policy of giving credit is so important, as molecular biologist Francine Ntoumi, PhD, told The World. “This means that we are going to participate in the game. We are able to say what is circulating. You are no more an observer and I think it makes a difference.” Ntoumi is Founder and Executive Director of the Congolese Foundation for Medical Research (CFMR) in the Republic of Congo, a lecturer in Immunology at Marien Ngouabi University, and Associate Professor and Head of a Research Group at the Institute of Tropical Medicine at the University of Tübingen, Germany.

The guarantee that credit will be given softens some of those fears and explains why the GISAID database is so vast, and increasingly contains sequences from scientists in Africa, South American, and other places where genomic sequencing was not widespread prior to the pandemic. Information from all over the world is crucial for scientists monitoring the mutations of the SARS-CoV-2 coronavirus.

Criticisms of GISAID

The fact that more countries are contributing to the GISAID database is certainly a positive, but the non-profit is not without its critics. There have been complaints about the lack of transparency, and some researchers claim to have had their access denied to the data without any explanation.

An article published in Science reported that “Scientists live in fear of losing access to the GISAID database.”

One scientist who requested anonymity told Science, “I am so tired of being scared all the time, of being terrified that if I take a step wrong, I will lose access to the data that I base my research on. [GISAID] has that sword hanging over any scientist that works on SARS-CoV-2.”

In response to these criticisms, GISAID said in a statement, “Any individual who registers with GISAID and agrees to the GISAID terms of use will be granted access credentials. … On rare occasions, GISAID has found it necessary to temporarily suspend access credentials to protect the GISAID sharing mechanism,” The World reported.

The strict sharing rules may be necessary to encourage researchers in lower income countries to contribute their genomic data on SARS-CoV-2. Charles Rotimi, PhD, a geneticist at the National Human Genome Research Institute (NHGRI), told Science, “To make scientists, especially from developing countries, more comfortable—making sure that they are recognized in the work that they are doing—sometimes you have to create an extra layer [of protection].”

GISAID has certainly accomplished much in its assembling four million SARS-CoV-2 genetic sequences. The initiative’s efforts have contributed to a substantial increase in the number of countries around the world that now have gene sequencing capabilities.

This is another illustration for clinical laboratory managers and pathologists of how continual technology advances in gene sequencing equipment and data analysis software make it significantly cheaper, faster, and more accurate to do genetic sequencing. This was not true, just a few years ago.

—Dava Stewart

Related Information:

From Congo to Chile, Small Labs Are Playing a Growing Role in Global Understanding of COVID

Africa CDC Ramps Up Training on SARS-CoV-2 Genomics and Bioinformatics

The Cost of Sequencing a Human Genome

Critics Decry Access, Transparency Issues with Key Trove of Coronavirus Sequences

;